This repository has been archived by the owner on Dec 11, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathstatistics.go
63 lines (56 loc) · 2.11 KB
/
statistics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// statistics.go implementation of statistical information of the evolution.
//
// Copyright (C) 2017 Jin Yeom
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package neat
import (
"math"
)
// Statistics is a data structure that records statistical information of each
// generation during the evolutionary process.
type Statistics struct {
NumSpecies []int // number of species in each generation
MinFitness []float64 // minimum fitness in each generation
MaxFitness []float64 // maximum fitness in each generation
AvgFitness []float64 // average fitness in each generation
}
// NewStatistics returns a new instance of Statistics.
func NewStatistics(numGenerations int) *Statistics {
return &Statistics{
NumSpecies: make([]int, numGenerations),
MinFitness: make([]float64, numGenerations),
MaxFitness: make([]float64, numGenerations),
AvgFitness: make([]float64, numGenerations),
}
}
// Update the statistics of current generation
func (s *Statistics) Update(currGen int, n *NEAT) {
s.NumSpecies[currGen] = len(n.Species)
// mininum and maximum
s.MinFitness[currGen] = n.Population[0].Fitness
s.MaxFitness[currGen] = n.Population[0].Fitness
for _, genome := range n.Population {
s.MinFitness[currGen] = math.Min(genome.Fitness, s.MinFitness[currGen])
s.MaxFitness[currGen] = math.Max(genome.Fitness, s.MinFitness[currGen])
}
// average fitness
s.AvgFitness[currGen] = func() float64 {
avg := 0.0
for _, genome := range n.Population {
avg += genome.Fitness
}
return avg / float64(n.Config.PopulationSize)
}()
}