-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnoise.cpp
810 lines (683 loc) · 24.3 KB
/
noise.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#define FASTLED_INTERNAL
#include "FastLED.h"
#include <string.h>
FASTLED_NAMESPACE_BEGIN
#define P(x) FL_PGM_READ_BYTE_NEAR(p + x)
FL_PROGMEM static uint8_t const p[] = {
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180,
151};
#if FASTLED_NOISE_ALLOW_AVERAGE_TO_OVERFLOW == 1
#define AVG15(U,V) (((U)+(V)) >> 1)
#else
// See if we should use the inlined avg15 for AVR with MUL instruction
#if defined(__AVR__) && (LIB8_ATTINY == 0)
#define AVG15(U,V) (avg15_inline_avr_mul((U),(V)))
// inlined copy of avg15 for AVR with MUL instruction; cloned from math8.h
// Forcing this inline in the 3-D 16bit noise produces a 12% speedup overall,
// at a cost of just +8 bytes of net code size.
static int16_t inline __attribute__((always_inline)) avg15_inline_avr_mul( int16_t i, int16_t j)
{
asm volatile(
/* first divide j by 2, throwing away lowest bit */
"asr %B[j] \n\t"
"ror %A[j] \n\t"
/* now divide i by 2, with lowest bit going into C */
"asr %B[i] \n\t"
"ror %A[i] \n\t"
/* add j + C to i */
"adc %A[i], %A[j] \n\t"
"adc %B[i], %B[j] \n\t"
: [i] "+a" (i)
: [j] "a" (j) );
return i;
}
#else
#define AVG15(U,V) (avg15((U),(V)))
#endif
#endif
// See fastled_config.h for notes on this;
// "#define FASTLED_NOISE_FIXED 1" is the correct value
#if FASTLED_NOISE_FIXED == 0
#define EASE8(x) (FADE(x) )
#define EASE16(x) (FADE(x) )
#else
#define EASE8(x) (ease8InOutQuad(x) )
#define EASE16(x) (ease16InOutQuad(x))
#endif
//
// #define FADE_12
#define FADE_16
#ifdef FADE_12
#define FADE logfade12
#define LERP(a,b,u) lerp15by12(a,b,u)
#else
#define FADE(x) scale16(x,x)
#define LERP(a,b,u) lerp15by16(a,b,u)
#endif
static int16_t inline __attribute__((always_inline)) grad16(uint8_t hash, int16_t x, int16_t y, int16_t z) {
#if 0
switch(hash & 0xF) {
case 0: return (( x) + ( y))>>1;
case 1: return ((-x) + ( y))>>1;
case 2: return (( x) + (-y))>>1;
case 3: return ((-x) + (-y))>>1;
case 4: return (( x) + ( z))>>1;
case 5: return ((-x) + ( z))>>1;
case 6: return (( x) + (-z))>>1;
case 7: return ((-x) + (-z))>>1;
case 8: return (( y) + ( z))>>1;
case 9: return ((-y) + ( z))>>1;
case 10: return (( y) + (-z))>>1;
case 11: return ((-y) + (-z))>>1;
case 12: return (( y) + ( x))>>1;
case 13: return ((-y) + ( z))>>1;
case 14: return (( y) + (-x))>>1;
case 15: return ((-y) + (-z))>>1;
}
#else
hash = hash&15;
int16_t u = hash<8?x:y;
int16_t v = hash<4?y:hash==12||hash==14?x:z;
if(hash&1) { u = -u; }
if(hash&2) { v = -v; }
return AVG15(u,v);
#endif
}
static int16_t inline __attribute__((always_inline)) grad16(uint8_t hash, int16_t x, int16_t y) {
hash = hash & 7;
int16_t u,v;
if(hash < 4) { u = x; v = y; } else { u = y; v = x; }
if(hash&1) { u = -u; }
if(hash&2) { v = -v; }
return AVG15(u,v);
}
static int16_t inline __attribute__((always_inline)) grad16(uint8_t hash, int16_t x) {
hash = hash & 15;
int16_t u,v;
if(hash > 8) { u=x;v=x; }
else if(hash < 4) { u=x;v=1; }
else { u=1;v=x; }
if(hash&1) { u = -u; }
if(hash&2) { v = -v; }
return AVG15(u,v);
}
// selectBasedOnHashBit performs this:
// result = (hash & (1<<bitnumber)) ? a : b
// but with an AVR asm version that's smaller and quicker than C
// (and probably not worth including in lib8tion)
static int8_t inline __attribute__((always_inline)) selectBasedOnHashBit(uint8_t hash, uint8_t bitnumber, int8_t a, int8_t b) {
int8_t result;
#if !defined(__AVR__)
result = (hash & (1<<bitnumber)) ? a : b;
#else
asm volatile(
"mov %[result],%[a] \n\t"
"sbrs %[hash],%[bitnumber] \n\t"
"mov %[result],%[b] \n\t"
: [result] "=r" (result)
: [hash] "r" (hash),
[bitnumber] "M" (bitnumber),
[a] "r" (a),
[b] "r" (b)
);
#endif
return result;
}
static int8_t inline __attribute__((always_inline)) grad8(uint8_t hash, int8_t x, int8_t y, int8_t z) {
#if 0
switch(hash & 0xF) {
case 0: return (( x) + ( y))>>1;
case 1: return ((-x) + ( y))>>1;
case 2: return (( x) + (-y))>>1;
case 3: return ((-x) + (-y))>>1;
case 4: return (( x) + ( z))>>1;
case 5: return ((-x) + ( z))>>1;
case 6: return (( x) + (-z))>>1;
case 7: return ((-x) + (-z))>>1;
case 8: return (( y) + ( z))>>1;
case 9: return ((-y) + ( z))>>1;
case 10: return (( y) + (-z))>>1;
case 11: return ((-y) + (-z))>>1;
case 12: return (( y) + ( x))>>1;
case 13: return ((-y) + ( z))>>1;
case 14: return (( y) + (-x))>>1;
case 15: return ((-y) + (-z))>>1;
}
#else
hash &= 0xF;
int8_t u, v;
//u = (hash&8)?y:x;
u = selectBasedOnHashBit( hash, 3, y, x);
#if 1
v = hash<4?y:hash==12||hash==14?x:z;
#else
// Verbose version for analysis; generates idenitical code.
if( hash < 4) { // 00 01 02 03
v = y;
} else {
if( hash==12 || hash==14) { // 0C 0E
v = x;
} else {
v = z; // 04 05 06 07 08 09 0A 0B 0D 0F
}
}
#endif
if(hash&1) { u = -u; }
if(hash&2) { v = -v; }
return avg7(u,v);
#endif
}
static int8_t inline __attribute__((always_inline)) grad8(uint8_t hash, int8_t x, int8_t y)
{
// since the tests below can be done bit-wise on the bottom
// three bits, there's no need to mask off the higher bits
// hash = hash & 7;
int8_t u,v;
if( hash & 4) {
u = y; v = x;
} else {
u = x; v = y;
}
if(hash&1) { u = -u; }
if(hash&2) { v = -v; }
return avg7(u,v);
}
static int8_t inline __attribute__((always_inline)) grad8(uint8_t hash, int8_t x)
{
// since the tests below can be done bit-wise on the bottom
// four bits, there's no need to mask off the higher bits
// hash = hash & 15;
int8_t u,v;
if(hash & 8) {
u=x; v=x;
} else {
if(hash & 4) {
u=1; v=x;
} else {
u=x; v=1;
}
}
if(hash&1) { u = -u; }
if(hash&2) { v = -v; }
return avg7(u,v);
}
#ifdef FADE_12
uint16_t logfade12(uint16_t val) {
return scale16(val,val)>>4;
}
static int16_t inline __attribute__((always_inline)) lerp15by12( int16_t a, int16_t b, fract16 frac)
{
//if(1) return (lerp(frac,a,b));
int16_t result;
if( b > a) {
uint16_t delta = b - a;
uint16_t scaled = scale16(delta,frac<<4);
result = a + scaled;
} else {
uint16_t delta = a - b;
uint16_t scaled = scale16(delta,frac<<4);
result = a - scaled;
}
return result;
}
#endif
static int8_t inline __attribute__((always_inline)) lerp7by8( int8_t a, int8_t b, fract8 frac)
{
// int8_t delta = b - a;
// int16_t prod = (uint16_t)delta * (uint16_t)frac;
// int8_t scaled = prod >> 8;
// int8_t result = a + scaled;
// return result;
int8_t result;
if( b > a) {
uint8_t delta = b - a;
uint8_t scaled = scale8( delta, frac);
result = a + scaled;
} else {
uint8_t delta = a - b;
uint8_t scaled = scale8( delta, frac);
result = a - scaled;
}
return result;
}
int16_t inoise16_raw(uint32_t x, uint32_t y, uint32_t z)
{
// Find the unit cube containing the point
uint8_t X = (x>>16)&0xFF;
uint8_t Y = (y>>16)&0xFF;
uint8_t Z = (z>>16)&0xFF;
// Hash cube corner coordinates
uint8_t A = P(X)+Y;
uint8_t AA = P(A)+Z;
uint8_t AB = P(A+1)+Z;
uint8_t B = P(X+1)+Y;
uint8_t BA = P(B) + Z;
uint8_t BB = P(B+1)+Z;
// Get the relative position of the point in the cube
uint16_t u = x & 0xFFFF;
uint16_t v = y & 0xFFFF;
uint16_t w = z & 0xFFFF;
// Get a signed version of the above for the grad function
int16_t xx = (u >> 1) & 0x7FFF;
int16_t yy = (v >> 1) & 0x7FFF;
int16_t zz = (w >> 1) & 0x7FFF;
uint16_t N = 0x8000L;
u = EASE16(u); v = EASE16(v); w = EASE16(w);
// skip the log fade adjustment for the moment, otherwise here we would
// adjust fade values for u,v,w
int16_t X1 = LERP(grad16(P(AA), xx, yy, zz), grad16(P(BA), xx - N, yy, zz), u);
int16_t X2 = LERP(grad16(P(AB), xx, yy-N, zz), grad16(P(BB), xx - N, yy - N, zz), u);
int16_t X3 = LERP(grad16(P(AA+1), xx, yy, zz-N), grad16(P(BA+1), xx - N, yy, zz-N), u);
int16_t X4 = LERP(grad16(P(AB+1), xx, yy-N, zz-N), grad16(P(BB+1), xx - N, yy - N, zz - N), u);
int16_t Y1 = LERP(X1,X2,v);
int16_t Y2 = LERP(X3,X4,v);
int16_t ans = LERP(Y1,Y2,w);
return ans;
}
uint16_t inoise16(uint32_t x, uint32_t y, uint32_t z) {
int32_t ans = inoise16_raw(x,y,z);
ans = ans + 19052L;
uint32_t pan = ans;
// pan = (ans * 220L) >> 7. That's the same as:
// pan = (ans * 440L) >> 8. And this way avoids a 7X four-byte shift-loop on AVR.
// Identical math, except for the highest bit, which we don't care about anyway,
// since we're returning the 'middle' 16 out of a 32-bit value anyway.
pan *= 440L;
return (pan>>8);
// // return scale16by8(pan,220)<<1;
// return ((inoise16_raw(x,y,z)+19052)*220)>>7;
// return scale16by8(inoise16_raw(x,y,z)+19052,220)<<1;
}
int16_t inoise16_raw(uint32_t x, uint32_t y)
{
// Find the unit cube containing the point
uint8_t X = x>>16;
uint8_t Y = y>>16;
// Hash cube corner coordinates
uint8_t A = P(X)+Y;
uint8_t AA = P(A);
uint8_t AB = P(A+1);
uint8_t B = P(X+1)+Y;
uint8_t BA = P(B);
uint8_t BB = P(B+1);
// Get the relative position of the point in the cube
uint16_t u = x & 0xFFFF;
uint16_t v = y & 0xFFFF;
// Get a signed version of the above for the grad function
int16_t xx = (u >> 1) & 0x7FFF;
int16_t yy = (v >> 1) & 0x7FFF;
uint16_t N = 0x8000L;
u = EASE16(u); v = EASE16(v);
int16_t X1 = LERP(grad16(P(AA), xx, yy), grad16(P(BA), xx - N, yy), u);
int16_t X2 = LERP(grad16(P(AB), xx, yy-N), grad16(P(BB), xx - N, yy - N), u);
int16_t ans = LERP(X1,X2,v);
return ans;
}
uint16_t inoise16(uint32_t x, uint32_t y) {
int32_t ans = inoise16_raw(x,y);
ans = ans + 17308L;
uint32_t pan = ans;
// pan = (ans * 242L) >> 7. That's the same as:
// pan = (ans * 484L) >> 8. And this way avoids a 7X four-byte shift-loop on AVR.
// Identical math, except for the highest bit, which we don't care about anyway,
// since we're returning the 'middle' 16 out of a 32-bit value anyway.
pan *= 484L;
return (pan>>8);
// return (uint32_t)(((int32_t)inoise16_raw(x,y)+(uint32_t)17308)*242)>>7;
// return scale16by8(inoise16_raw(x,y)+17308,242)<<1;
}
int16_t inoise16_raw(uint32_t x)
{
// Find the unit cube containing the point
uint8_t X = x>>16;
// Hash cube corner coordinates
uint8_t A = P(X);
uint8_t AA = P(A);
uint8_t B = P(X+1);
uint8_t BA = P(B);
// Get the relative position of the point in the cube
uint16_t u = x & 0xFFFF;
// Get a signed version of the above for the grad function
int16_t xx = (u >> 1) & 0x7FFF;
uint16_t N = 0x8000L;
u = EASE16(u);
int16_t ans = LERP(grad16(P(AA), xx), grad16(P(BA), xx - N), u);
return ans;
}
uint16_t inoise16(uint32_t x) {
return ((uint32_t)((int32_t)inoise16_raw(x) + 17308L)) << 1;
}
int8_t inoise8_raw(uint16_t x, uint16_t y, uint16_t z)
{
// Find the unit cube containing the point
uint8_t X = x>>8;
uint8_t Y = y>>8;
uint8_t Z = z>>8;
// Hash cube corner coordinates
uint8_t A = P(X)+Y;
uint8_t AA = P(A)+Z;
uint8_t AB = P(A+1)+Z;
uint8_t B = P(X+1)+Y;
uint8_t BA = P(B) + Z;
uint8_t BB = P(B+1)+Z;
// Get the relative position of the point in the cube
uint8_t u = x;
uint8_t v = y;
uint8_t w = z;
// Get a signed version of the above for the grad function
int8_t xx = ((uint8_t)(x)>>1) & 0x7F;
int8_t yy = ((uint8_t)(y)>>1) & 0x7F;
int8_t zz = ((uint8_t)(z)>>1) & 0x7F;
uint8_t N = 0x80;
u = EASE8(u); v = EASE8(v); w = EASE8(w);
int8_t X1 = lerp7by8(grad8(P(AA), xx, yy, zz), grad8(P(BA), xx - N, yy, zz), u);
int8_t X2 = lerp7by8(grad8(P(AB), xx, yy-N, zz), grad8(P(BB), xx - N, yy - N, zz), u);
int8_t X3 = lerp7by8(grad8(P(AA+1), xx, yy, zz-N), grad8(P(BA+1), xx - N, yy, zz-N), u);
int8_t X4 = lerp7by8(grad8(P(AB+1), xx, yy-N, zz-N), grad8(P(BB+1), xx - N, yy - N, zz - N), u);
int8_t Y1 = lerp7by8(X1,X2,v);
int8_t Y2 = lerp7by8(X3,X4,v);
int8_t ans = lerp7by8(Y1,Y2,w);
return ans;
}
uint8_t inoise8(uint16_t x, uint16_t y, uint16_t z) {
//return scale8(76+(inoise8_raw(x,y,z)),215)<<1;
int8_t n = inoise8_raw( x, y, z); // -64..+64
n+= 64; // 0..128
uint8_t ans = qadd8( n, n); // 0..255
return ans;
}
int8_t inoise8_raw(uint16_t x, uint16_t y)
{
// Find the unit cube containing the point
uint8_t X = x>>8;
uint8_t Y = y>>8;
// Hash cube corner coordinates
uint8_t A = P(X)+Y;
uint8_t AA = P(A);
uint8_t AB = P(A+1);
uint8_t B = P(X+1)+Y;
uint8_t BA = P(B);
uint8_t BB = P(B+1);
// Get the relative position of the point in the cube
uint8_t u = x;
uint8_t v = y;
// Get a signed version of the above for the grad function
int8_t xx = ((uint8_t)(x)>>1) & 0x7F;
int8_t yy = ((uint8_t)(y)>>1) & 0x7F;
uint8_t N = 0x80;
u = EASE8(u); v = EASE8(v);
int8_t X1 = lerp7by8(grad8(P(AA), xx, yy), grad8(P(BA), xx - N, yy), u);
int8_t X2 = lerp7by8(grad8(P(AB), xx, yy-N), grad8(P(BB), xx - N, yy - N), u);
int8_t ans = lerp7by8(X1,X2,v);
return ans;
// return scale8((70+(ans)),234)<<1;
}
uint8_t inoise8(uint16_t x, uint16_t y) {
//return scale8(69+inoise8_raw(x,y),237)<<1;
int8_t n = inoise8_raw( x, y); // -64..+64
n+= 64; // 0..128
uint8_t ans = qadd8( n, n); // 0..255
return ans;
}
// output range = -64 .. +64
int8_t inoise8_raw(uint16_t x)
{
// Find the unit cube containing the point
uint8_t X = x>>8;
// Hash cube corner coordinates
uint8_t A = P(X);
uint8_t AA = P(A);
uint8_t B = P(X+1);
uint8_t BA = P(B);
// Get the relative position of the point in the cube
uint8_t u = x;
// Get a signed version of the above for the grad function
int8_t xx = ((uint8_t)(x)>>1) & 0x7F;
uint8_t N = 0x80;
u = EASE8( u);
int8_t ans = lerp7by8(grad8(P(AA), xx), grad8(P(BA), xx - N), u);
return ans;
}
uint8_t inoise8(uint16_t x) {
int8_t n = inoise8_raw(x); //-64..+64
n += 64; // 0..128
uint8_t ans = qadd8(n,n); // 0..255
return ans;
}
// struct q44 {
// uint8_t i:4;
// uint8_t f:4;
// q44(uint8_t _i, uint8_t _f) {i=_i; f=_f; }
// };
// uint32_t mul44(uint32_t v, q44 mulby44) {
// return (v *mulby44.i) + ((v * mulby44.f) >> 4);
// }
//
// uint16_t mul44_16(uint16_t v, q44 mulby44) {
// return (v *mulby44.i) + ((v * mulby44.f) >> 4);
// }
void fill_raw_noise8(uint8_t *pData, uint8_t num_points, uint8_t octaves, uint16_t x, int scale, uint16_t time) {
uint32_t _xx = x;
uint32_t scx = scale;
for(int o = 0; o < octaves; o++) {
for(int i = 0,xx=_xx; i < num_points; i++, xx+=scx) {
pData[i] = qadd8(pData[i],inoise8(xx,time)>>o);
}
_xx <<= 1;
scx <<= 1;
}
}
void fill_raw_noise16into8(uint8_t *pData, uint8_t num_points, uint8_t octaves, uint32_t x, int scale, uint32_t time) {
uint32_t _xx = x;
uint32_t scx = scale;
for(int o = 0; o < octaves; o++) {
for(int i = 0,xx=_xx; i < num_points; i++, xx+=scx) {
uint32_t accum = (inoise16(xx,time))>>o;
accum += (pData[i]<<8);
if(accum > 65535) { accum = 65535; }
pData[i] = accum>>8;
}
_xx <<= 1;
scx <<= 1;
}
}
void fill_raw_2dnoise8(uint8_t *pData, int width, int height, uint8_t octaves, q44 freq44, fract8 amplitude, int skip, uint16_t x, int scalex, uint16_t y, int scaley, uint16_t time) {
if(octaves > 1) {
fill_raw_2dnoise8(pData, width, height, octaves-1, freq44, amplitude, skip+1, x*freq44, freq44 * scalex, y*freq44, freq44 * scaley, time);
} else {
// amplitude is always 255 on the lowest level
amplitude=255;
}
scalex *= skip;
scaley *= skip;
fract8 invamp = 255-amplitude;
uint16_t xx = x;
for(int i = 0; i < height; i++, y+=scaley) {
uint8_t *pRow = pData + (i*width);
xx = x;
for(int j = 0; j < width; j++, xx+=scalex) {
uint8_t noise_base = inoise8(xx,y,time);
noise_base = (0x80 & noise_base) ? (noise_base - 127) : (127 - noise_base);
noise_base = scale8(noise_base<<1,amplitude);
if(skip == 1) {
pRow[j] = scale8(pRow[j],invamp) + noise_base;
} else {
for(int ii = i; ii<(i+skip) && ii<height; ii++) {
uint8_t *pRow = pData + (ii*width);
for(int jj=j; jj<(j+skip) && jj<width; jj++) {
pRow[jj] = scale8(pRow[jj],invamp) + noise_base;
}
}
}
}
}
}
void fill_raw_2dnoise8(uint8_t *pData, int width, int height, uint8_t octaves, uint16_t x, int scalex, uint16_t y, int scaley, uint16_t time) {
fill_raw_2dnoise8(pData, width, height, octaves, q44(2,0), 128, 1, x, scalex, y, scaley, time);
}
void fill_raw_2dnoise16(uint16_t *pData, int width, int height, uint8_t octaves, q88 freq88, fract16 amplitude, int skip, uint32_t x, int scalex, uint32_t y, int scaley, uint32_t time) {
if(octaves > 1) {
fill_raw_2dnoise16(pData, width, height, octaves-1, freq88, amplitude, skip, x *freq88 , scalex *freq88, y * freq88, scaley * freq88, time);
} else {
// amplitude is always 255 on the lowest level
amplitude=65535;
}
scalex *= skip;
scaley *= skip;
fract16 invamp = 65535-amplitude;
for(int i = 0; i < height; i+=skip, y+=scaley) {
uint16_t *pRow = pData + (i*width);
for(int j = 0,xx=x; j < width; j+=skip, xx+=scalex) {
uint16_t noise_base = inoise16(xx,y,time);
noise_base = (0x8000 & noise_base) ? noise_base - (32767) : 32767 - noise_base;
noise_base = scale16(noise_base<<1, amplitude);
if(skip==1) {
pRow[j] = scale16(pRow[j],invamp) + noise_base;
} else {
for(int ii = i; ii<(i+skip) && ii<height; ii++) {
uint16_t *pRow = pData + (ii*width);
for(int jj=j; jj<(j+skip) && jj<width; jj++) {
pRow[jj] = scale16(pRow[jj],invamp) + noise_base;
}
}
}
}
}
}
int32_t nmin=11111110;
int32_t nmax=0;
void fill_raw_2dnoise16into8(uint8_t *pData, int width, int height, uint8_t octaves, q44 freq44, fract8 amplitude, int skip, uint32_t x, int scalex, uint32_t y, int scaley, uint32_t time) {
if(octaves > 1) {
fill_raw_2dnoise16into8(pData, width, height, octaves-1, freq44, amplitude, skip+1, x*freq44, scalex *freq44, y*freq44, scaley * freq44, time);
} else {
// amplitude is always 255 on the lowest level
amplitude=255;
}
scalex *= skip;
scaley *= skip;
uint32_t xx;
fract8 invamp = 255-amplitude;
for(int i = 0; i < height; i+=skip, y+=scaley) {
uint8_t *pRow = pData + (i*width);
xx = x;
for(int j = 0; j < width; j+=skip, xx+=scalex) {
uint16_t noise_base = inoise16(xx,y,time);
noise_base = (0x8000 & noise_base) ? noise_base - (32767) : 32767 - noise_base;
noise_base = scale8(noise_base>>7,amplitude);
if(skip==1) {
pRow[j] = qadd8(scale8(pRow[j],invamp),noise_base);
} else {
for(int ii = i; ii<(i+skip) && ii<height; ii++) {
uint8_t *pRow = pData + (ii*width);
for(int jj=j; jj<(j+skip) && jj<width; jj++) {
pRow[jj] = scale8(pRow[jj],invamp) + noise_base;
}
}
}
}
}
}
void fill_raw_2dnoise16into8(uint8_t *pData, int width, int height, uint8_t octaves, uint32_t x, int scalex, uint32_t y, int scaley, uint32_t time) {
fill_raw_2dnoise16into8(pData, width, height, octaves, q44(2,0), 171, 1, x, scalex, y, scaley, time);
}
void fill_noise8(CRGB *leds, int num_leds,
uint8_t octaves, uint16_t x, int scale,
uint8_t hue_octaves, uint16_t hue_x, int hue_scale,
uint16_t time) {
uint8_t V[num_leds];
uint8_t H[num_leds];
memset(V,0,num_leds);
memset(H,0,num_leds);
fill_raw_noise8(V,num_leds,octaves,x,scale,time);
fill_raw_noise8(H,num_leds,hue_octaves,hue_x,hue_scale,time);
for(int i = 0; i < num_leds; i++) {
leds[i] = CHSV(H[i],255,V[i]);
}
}
void fill_noise16(CRGB *leds, int num_leds,
uint8_t octaves, uint16_t x, int scale,
uint8_t hue_octaves, uint16_t hue_x, int hue_scale,
uint16_t time, uint8_t hue_shift) {
uint8_t V[num_leds];
uint8_t H[num_leds];
memset(V,0,num_leds);
memset(H,0,num_leds);
fill_raw_noise16into8(V,num_leds,octaves,x,scale,time);
fill_raw_noise8(H,num_leds,hue_octaves,hue_x,hue_scale,time);
for(int i = 0; i < num_leds; i++) {
leds[i] = CHSV(H[i] + hue_shift,255,V[i]);
}
}
void fill_2dnoise8(CRGB *leds, int width, int height, bool serpentine,
uint8_t octaves, uint16_t x, int xscale, uint16_t y, int yscale, uint16_t time,
uint8_t hue_octaves, uint16_t hue_x, int hue_xscale, uint16_t hue_y, uint16_t hue_yscale,uint16_t hue_time,bool blend) {
uint8_t V[height][width];
uint8_t H[height][width];
memset(V,0,height*width);
memset(H,0,height*width);
fill_raw_2dnoise8((uint8_t*)V,width,height,octaves,x,xscale,y,yscale,time);
fill_raw_2dnoise8((uint8_t*)H,width,height,hue_octaves,hue_x,hue_xscale,hue_y,hue_yscale,hue_time);
int w1 = width-1;
int h1 = height-1;
for(int i = 0; i < height; i++) {
int wb = i*width;
for(int j = 0; j < width; j++) {
CRGB led(CHSV(H[h1-i][w1-j],255,V[i][j]));
int pos = j;
if(serpentine && (i & 0x1)) {
pos = w1-j;
}
if(blend) {
leds[wb+pos] >>= 1; leds[wb+pos] += (led>>=1);
} else {
leds[wb+pos] = led;
}
}
}
}
void fill_2dnoise16(CRGB *leds, int width, int height, bool serpentine,
uint8_t octaves, uint32_t x, int xscale, uint32_t y, int yscale, uint32_t time,
uint8_t hue_octaves, uint16_t hue_x, int hue_xscale, uint16_t hue_y, uint16_t hue_yscale,uint16_t hue_time, bool blend, uint16_t hue_shift) {
uint8_t V[height][width];
uint8_t H[height][width];
memset(V,0,height*width);
memset(H,0,height*width);
fill_raw_2dnoise16into8((uint8_t*)V,width,height,octaves,q44(2,0),171,1,x,xscale,y,yscale,time);
// fill_raw_2dnoise16into8((uint8_t*)V,width,height,octaves,x,xscale,y,yscale,time);
// fill_raw_2dnoise8((uint8_t*)V,width,height,hue_octaves,x,xscale,y,yscale,time);
fill_raw_2dnoise8((uint8_t*)H,width,height,hue_octaves,hue_x,hue_xscale,hue_y,hue_yscale,hue_time);
int w1 = width-1;
int h1 = height-1;
hue_shift >>= 8;
for(int i = 0; i < height; i++) {
int wb = i*width;
for(int j = 0; j < width; j++) {
CRGB led(CHSV(hue_shift + (H[h1-i][w1-j]),196,V[i][j]));
int pos = j;
if(serpentine && (i & 0x1)) {
pos = w1-j;
}
if(blend) {
leds[wb+pos] >>= 1; leds[wb+pos] += (led>>=1);
} else {
leds[wb+pos] = led;
}
}
}
}
FASTLED_NAMESPACE_END