-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSigle cell data download and sort for further analysis.txt
91 lines (77 loc) · 3.97 KB
/
Sigle cell data download and sort for further analysis.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Load libraries
library(Seurat)
library(tidyverse)
library(ggpubr)
library(Matrix)
### Part #1 - Loading Data from Different Sources ###
## 10X Genomics Website (Filtered Feature Barcode folder) ##
# We will be using a public 10X Genomics scRNA-Seq dataset in PBMC cells
# You can read more 10X public datasets: https://www.10xgenomics.com/resources/datasets/
# Download the dataset if it is not already present
if (! file.exists("filtered_feature_bc_matrix/barcodes.tsv.gz")) {
pbmc_url <- "https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_filtered_feature_bc_matrix.tar.gz"
download.file(pbmc_url,
destfile = "pbmc_1k_v3_filtered_gene_bc_matrices.tar.gz")
untar("pbmc_1k_v3_filtered_gene_bc_matrices.tar.gz")
}
mat <- Read10X(data.dir = "filtered_feature_bc_matrix/")
srt <- CreateSeuratObject(mat)
## 10X Genomics Website (h5 file) ##
# We will be using a public 10X Genomics scRNA-Seq dataset in PBMC cells
# You can read more 10X public datasets: https://www.10xgenomics.com/resources/datasets/
# Download the dataset if it is not already present
if (! file.exists("pbmc_1k_v3_filtered_gene_bc_matrices.h5")) {
pbmc_h5_url <- "https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_filtered_feature_bc_matrix.h5"
download.file(pbmc_h5_url, method = "curl",
destfile = "pbmc_1k_v3_filtered_gene_bc_matrices.h5")
}
mat <- Read10X_h5(filename = "pbmc_1k_v3_filtered_gene_bc_matrices.h5")
srt <- CreateSeuratObject(mat)
## From PangloaDB ##
# Download https://panglaodb.se/data_dl.php?sra=SRA553822&srs=SRS2119548&filetype=R&datatype=readcounts
# Add it to your project folder and then...
load("SRA553822_SRS2119548.sparse.RData")
srt <- CreateSeuratObject(sm)
## GEO ##
# GEO is the main source of all public HTS data
# An example scRNA-Seq study is here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146221
# Step #1: Download the dataset
if (! file.exists("EWS_Cells_10X/GSM4368462_CHLA9_barcodes.tsv.gz")) {
archive_url <- "https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE146221&format=file"
download.file(archive_url, destfile = "EWS_Cells.tar", method = "curl") # Method = curl to avoid corruption
untar("EWS_Cells.tar", exdir = "EWS_Cells_10X")
}
# Step #2: Get the data into the matrix format in R
Read10X(data.dir = "EWS_Cells_10X/")
TC71_mat <- readMM(file = "EWS_Cells_10X/GSM4368464_TC71_matrix.mtx.gz")
genes <- read_tsv("EWS_Cells_10X/GSM4368464_TC71_features.tsv.gz",
col_names = FALSE)
rownames(TC71_mat) <- genes$X2
cellnames <- read_tsv("EWS_Cells_10X/GSM4368464_TC71_barcodes.tsv.gz",
col_names = FALSE)
colnames(TC71_mat) <- cellnames$X1
TC71_mat[1:10, 1:4]
# Step #3: Create the Seurat Object
srtTC71 <- CreateSeuratObject(TC71_mat, project = "TC71")
# Step #4: Repeat Steps 2-3 for CHLA9
CHLA9_mat <- readMM(file = "EWS_Cells_10X/GSM4368462_CHLA9_matrix.mtx.gz")
genes <- read_tsv("EWS_Cells_10X/GSM4368462_CHLA9_features.tsv.gz",
col_names = FALSE)
rownames(CHLA9_mat) <- genes$X2
cellnames <- read_tsv("EWS_Cells_10X/GSM4368462_CHLA9_barcodes.tsv.gz",
col_names = FALSE)
colnames(CHLA9_mat) <- cellnames$X1
srtCHLA9 <- CreateSeuratObject(CHLA9_mat, project = "CHLA9")
# Step #5: Combine srtCHLA9 and srtTC71
CHLA9_TC71_srt <- merge(x = srtCHLA9, y = srtTC71)
# Activity: Add in CHLA10 to the Seurat object
CHLA10_mat <- readMM(file = "EWS_Cells_10X/GSM4368463_CHLA10_matrix.mtx.gz")
rownames(CHLA10_mat) <- read_tsv("EWS_Cells_10X/GSM4368463_CHLA10_features.tsv.gz",
col_names = FALSE) %>%
pull(X2)
cellnames <- read_tsv("EWS_Cells_10X/GSM4368463_CHLA10_barcodes.tsv.gz",
col_names = FALSE)
colnames(CHLA10_mat) <- cellnames$X1
srtCHLA10 <- CreateSeuratObject(CHLA10_mat, project = "CHLA10")
# Combine srtCHLA10 with srtCHLA9 and srtTC71
full_srt <- merge(x = CHLA9_TC71_srt, y = srtCHLA10)