forked from paulskrzypczyk/steeringreview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbLHSTripartite1Unt.m
126 lines (106 loc) · 4.94 KB
/
bLHSTripartite1Unt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
function [is_bLHS,F] = bLHSTripartite1Unt(sigma,k,varargin)
%BLHSTRIPARTITE1UNT determines if a triparite assemblage with 1 untrusted
%party is biseparable-LHS (comes from a biseparable state)
% This function has two required arguments:
% sigma: a 4-D array, containing the tripartite assemblage prepared for
% Bob-Charlie by Alice. The first two dimensions contain the dB*dC x dB*dC
% (unnormalised) quantum states of Bob-Charlie. The last two dimensions
% contain (a,x), the outcome and input of Alice respectively.
%
% k: An integer, which specifies what size symmetric PPT extension to use
% in the corresponding part of the LHS model. That is, if k = 2, then these
% parts will be be required to have an (unnormalised) 2-symmetric PPT
% extension (as a relaxation of separability).
%
% This function has one optional argument:
% dims: a 2-D array containing the dimensions of Bob and Charlie. The
% default is dB = dC = sqrt(dB*dC) (determined from sigma directly). This
% argument only needs to be specified if Bob and Charlie do not hold
% states of the same dimension.
%
% is_bLHS = bLHSTripartite1Unt(sigma,k) is the indicator function for
% whether sigma could have arisen from measurements on a bi-separable
% state or not. This is an outer-approximation, and uses the set of
% k-symmetric PPT extendible states as an outer approximation to the set of
% separable states.
%
% is_bLHS = bLHSTripartite1Unt(sigma,k,dims) sets the local dimension of
% Bob to dims(1), and the local dimension of Charlie to dims(2).
%
% [is_bLHS,F] = bLHSTripartite1Unt(sigma,k) returns in F the steering
% functional that certifies that the assemblage sigma could not have arisen
% from a bi-separable state. F is a 4-D array. The first two dimensions
% contain the dB*dC x dB*dC operators for Bob-Charlie. The last two
% dimensions are (a,x). A negative value certifies that a given assemblage
% demonstrates genuine multipartite steering. In the case that the
% assemblage has an LHS model, the empty array F = [] is returned.
%
% requires: CVX (http://cvxr.com/cvx/), QETLAB (http://www.qetlab.com)
% authors: Paul Skrzypczyk, Daniel Cavalcanti
% last updated: March 17, 2016
tol = 1e-8;
% this is the tolerance used to decide if steering has been demonstrated or
% not. This figure appears safe, but it can be changed with caution.
[dBdC,~,oa,ma] = size(sigma);
% dBdC = dim. of Bob x dim. of Charlie,
% oa = # outcomes for Alice, ma = # inputs for Alice
[dims] = opt_args({[round(sqrt(dBdC)),round(sqrt(dBdC))]},varargin{:});
%fix values of optional inputs: defaults: dB = dC = sqrt(dB*dC), nm = 0
%(corresponding to unnormalised)
dB = dims(1); dC = dims(2);
% dB = dim. of Bob, dC = dim. of Charlie.
if isa(sigma,'cvx') == 0 % if sigma isn't a CVX variable
% check that the assemblage is valid
if NSAssemblage(sigma) == 0
error('assemblage is not valid')
end
end
cvx_begin sdp
variable sig(dB*dC,dB*dC,oa,ma) hermitian semidefinite
% the assemblage for the A|BC parition
variable pii(dB*dC,dB*dC,oa,ma) hermitian semidefinite
% the assemblage for the B|AC partition
variable gam(dB*dC,dB*dC,oa,ma) hermitian semidefinite
% the assemblage for the C|AB partition
variable slack(dB*dC,dB*dC,oa,ma) hermitian semidefinite
% a slack variable, used to force an equality constraint below
expression trBpii(dC,dC,oa,ma)
% an expression holder for tr_B(Pi_a|x)
expression trCgam(dB,dB,oa,ma)
% an expression holder for tr_C(gamma_a|x)
dual variable F
% steering functional, the dual variable
minimise real(sum(reshape(repmat(eye(dB*dC),[1,1,oa,ma]).*slack,1,[])))
% minimise sum_ax tr slack_a|x
subject to
F : sigma + slack == sig + pii + gam;
% sigma_a|x + slack_a|x == sig_a|x + pi_a|x + gam_a|x the bLHS decomp
for x = 1:ma
for a = 1:oa
trBpii(:,:,a,x) = PartialTrace(pii(:,:,a,x),1,[dB,dC]);
% initialise the expression for tr_B(pi_a|x)
trCgam(:,:,a,x) = PartialTrace(gam(:,:,a,x),2,[dB,dC]);
% initialise the expression for tr_C(gam_a|x)
SymmetricExtension(pii(:,:,a,x),k,[dB,dC],1,1) == 1;
% pi_a|x should be separable. Relax to k-sym PPT extension
SymmetricExtension(gam(:,:,a,x),k,[dB,dC],1,1) == 1;
% gam_a|x should be separable. Relax to k-symm PPT extension
end
end
LHSAssemblage(sig) == 1;
% sig_a|x should have an LHS decomposition
LHSAssemblage(trBpii) == 1;
% tr_B(pi_a|x) should have an LHS decomposition
LHSAssemblage(trCgam) == 1;
% tr_C(gam_a|x) should have an LHS decomposition
cvx_end
% CVX will return a positive value if sigma does not have an fLHS model. It
% will return approx 0 (<= tol) if it is fLHS. This converts {>tol, <= tol}
% to {0,1}
is_bLHS = 1-(cvx_optval > tol);
% if the assemblage is fLHS, there is no inequality to return, so set it
% equal to the empty array.
if is_bLHS == 1
F = [];
end
end