forked from paulskrzypczyk/steeringreview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbestSteeringState.m
47 lines (37 loc) · 1.52 KB
/
bestSteeringState.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function [beta, rho] = bestSteeringState(Max,F)
%BESTSTEERINGSTATE finds best state for steering functional and set of
%measurements of Alice
% This function has two required arguments:
% Max: a 4-D array containing a valid set of POVMs. The first two
% dimensions contain the dA x dA POVM elements, and the last two
% dimensions are (a,x)
% F: a 4-D array containing a steering functional. The first two
% dimensions contain the dB x dB hermitian members of the functional, and
% the last two dimensions are (a,x).
%
% beta = bestSteeringState(Max,F) returns the optimal violation of
% the steering functional F, with for the set of POVMs Max
%
% [beta, rho] = bestSteeringState(Max,F) also returns the optimal state rho
% that achieve the optimal violation. rho is a 2-D array, containing the
% bipartite quantum state of dimension dA*dB x dA*dB.
%
% requires: CVX (http://cvxr.com/cvx/), QETLAB (http://www.qetlab.com)
% authors: Paul Skrzypczyk, Daniel Cavalcanti
% last updated: March 17, 2016
[dB,~,~,~] = size(F);
% dB = dim. of Bob
[dA,~,oa,ma] = size(Max);
% dA = dim. of Alice, oa = # outcomes for Alice, ma = # inputs for Alice
cvx_begin sdp quiet
variable rho(dA*dB,dA*dB) hermitian semidefinite
% the state
maximise real(sum(reshape(genAssemblage(rho,Max).*conj(F),1,[])))
% NOTE: we assume that the steering inequality is of the form
% F.sigma^LHS <= beta, hence the maximisation.
subject to
trace(rho) == 1;
% rho should be normalised
cvx_end
beta = cvx_optval;
end