forked from paulskrzypczyk/steeringreview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenAssemblage.m
75 lines (63 loc) · 2.26 KB
/
genAssemblage.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function sigma = genAssemblage(rho,Max)
%GENASSEMBLAGE Create an assemblage from a state and a set of measurements
% This function has two required inputs:
% rho: a 2-D square array, containing a valid bipartite quantum state
% (i.e. a positive semidefinite operator). The state can be unnormalised
% if desired.
% Max: a 4-D array, containing the set of POVMs that Alice will measure
% on the state. The first two dimensions contain the POVM elements, and
% the last two dimensions label (a,x). That is, Max(:,:,a,x) = M_a|x, the
% dA x dA POVM element corresponding to input x and outcome a.
%
% sigma = NSAssemblage(sigma) generates the assemblage prepared for Bob,
% when Alice performs measurements Max on the bipartite state rho
%
% sigma = genAssemblage(rho,Max) can also be used inside CVX as
% a partially specified problem, to generate the assemblage sigma from the
% CVX variable rho and the set of measurements Max
%
% EXAMPLE:
% cvx_begin
%
% variable rho(dA*dB,dA*dB) hermitian semidefinite
% expression sigma(dB,dB,oa,ma)
%
% subject to
%
% sigma = genAssemblage(rho,Max);
%
% cvx_end
%
% Inside CVX, sigma is a variable corresponding to a quantum state, and
% sigma is an expression which contains the variables corresponding to the
% members of the assemblage.
%
% requires: CVX (http://cvxr.com/cvx/), QETLAB (http://www.qetlab.com)
% authors: Paul Skrzypczyk, Daniel Cavalcanti
% last updated: March 17, 2016
[dA,~,oa,ma] = size(Max);
% dA = dim. of Alice , oa = # outcomes, ma = # inputs for Alice
dB = length(rho)/dA;
% dB = dim. of Bob
if isa(rho,'cvx') == 0 % if rho isn't a CVX variable
sigma = zeros(dB,dB,oa,ma);
for a = 1:oa
for x = 1:ma
sigma(:,:,a,x) = ...
PartialTrace(Tensor(Max(:,:,a,x),eye(dB))*rho,1,[dA,dB]);
end
end
else
cvx_begin sdp quiet
expression sigma(dB,dB,oa,ma)
% specificy sigma as an expression (since we don't want to increase
% the number of variables inside the SDP)
for a = 1:oa
for x = 1:ma
sigma(:,:,a,x) ...
= PartialTrace(Tensor(Max(:,:,a,x),eye(dB))*rho,1,[dA,dB]);
end
end
cvx_end
end
end