forked from paulskrzypczyk/steeringreview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenRandProjMeas.m
37 lines (31 loc) · 1.31 KB
/
genRandProjMeas.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function Max = genRandProjMeas(dA,ma)
% GENRANPROJMEAS Generates a set of random rank-1 projective measurements
% This function has two required inputs:
% dA: the dimension of the Hilbert space on which the measurements act
% ma: the number of measurements
%
% Max = genRandProjMeas(dA,ma) generates a 4-D array containing the rank-1
% projective elements of the ma measurements. The first two dimensions
% contain the measurement operators, while the last two label (a,x). That
% is, Max(:,:,a,x) = Pi_a|x, where (Pi_a|x)^2 = Pi_a|x, and rank(Pi_a|x) =
% 1. The measurements are drawn from the Haar measure.
%
% requires: QETLAB (http://www.qetlab.com)
% authors: Paul Skrzypczyk, Daniel Cavalcanti
% last updated: March 17, 2016
Max = zeros(dA,dA,dA,ma);
%initalise Max
for x = 1:ma
temp = RandomUnitary(dA);
% pick a dA x dA unitary matrix from the Haar measure
[V,~] = eigs(temp); % find its eigenvectors
for a = 1:dA-1
vec = V(:,a);
Max(:,:,a,x) = vec*vec'; %projectors onto eigenvectors of U
end
Max(:,:,dA,x) = eye(dA) - sum(Max(:,:,1:dA-1,x),3);
% for stability, we pick the last POVM element to be identity - sum of
% the others, as sometimes numerical errors cause problems if we assign
% each projector directly from the random unitary
end
end