forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine_uart.c
801 lines (725 loc) · 28.1 KB
/
machine_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include "py/mphal.h"
#include "py/ringbuf.h"
#include "samd_soc.h"
#include "pin_af.h"
#include "shared/runtime/softtimer.h"
#define DEFAULT_UART_BAUDRATE (115200)
#define DEFAULT_BUFFER_SIZE (256)
#define MIN_BUFFER_SIZE (32)
#define MAX_BUFFER_SIZE (32766)
#define FLOW_CONTROL_RTS (1)
#define FLOW_CONTROL_CTS (2)
#if MICROPY_PY_MACHINE_UART_IRQ
#define UART_IRQ_RXIDLE (4096)
#define RXIDLE_TIMER_MIN (1)
#define MP_UART_ALLOWED_FLAGS (SERCOM_USART_INTFLAG_RXC | SERCOM_USART_INTFLAG_TXC | UART_IRQ_RXIDLE)
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(SERCOM_USART_INTFLAG_RXC) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_TXIDLE), MP_ROM_INT(SERCOM_USART_INTFLAG_TXC) }, \
enum {
RXIDLE_INACTIVE,
RXIDLE_STANDBY,
RXIDLE_ARMED,
RXIDLE_ALERT,
};
#else
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS
#endif
typedef struct _soft_timer_entry_extended_t {
soft_timer_entry_t base;
void *context;
} soft_timer_entry_extended_t;
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
uint8_t id;
uint32_t baudrate;
uint8_t bits;
uint8_t parity;
uint8_t stop;
uint8_t flow_control;
uint8_t tx;
uint8_t rx;
sercom_pad_config_t tx_pad_config;
sercom_pad_config_t rx_pad_config;
#if MICROPY_HW_UART_RTSCTS
uint8_t rts;
uint8_t cts;
sercom_pad_config_t rts_pad_config;
sercom_pad_config_t cts_pad_config;
#endif
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
bool new;
ringbuf_t read_buffer;
#if MICROPY_HW_UART_TXBUF
ringbuf_t write_buffer;
#endif
#if MICROPY_PY_MACHINE_UART_IRQ
uint16_t mp_irq_trigger; // user IRQ trigger mask
uint16_t mp_irq_flags; // user IRQ active IRQ flags
mp_irq_obj_t *mp_irq_obj; // user IRQ object
soft_timer_entry_extended_t rxidle_timer;
uint8_t rxidle_state;
uint16_t rxidle_ms;
#endif
} machine_uart_obj_t;
static const char *_parity_name[] = {"None", "", "0", "1"}; // Is defined as 0, 2, 3
// Irq handler
// take all bytes from the fifo and store them in the buffer
static void uart_drain_rx_fifo(machine_uart_obj_t *self, Sercom *uart) {
uint8_t bits = self->bits;
while (uart->USART.INTFLAG.bit.RXC != 0) {
if (ringbuf_free(&self->read_buffer) >= (bits <= 8 ? 1 : 2)) {
// get a word from uart and put into the buffer
if (bits <= 8) {
ringbuf_put(&(self->read_buffer), uart->USART.DATA.bit.DATA);
} else {
uint16_t data = uart->USART.DATA.bit.DATA;
ringbuf_put(&(self->read_buffer), data);
ringbuf_put(&(self->read_buffer), data >> 8);
}
} else {
// if the buffer is full, disable the RX interrupt
// allowing RTS to come up. It will be re-enabled by the next read
uart->USART.INTENCLR.reg = SERCOM_USART_INTENSET_RXC;
break;
}
}
}
void common_uart_irq_handler(int uart_id) {
machine_uart_obj_t *self = MP_STATE_PORT(sercom_table[uart_id]);
// Handle IRQ
if (self != NULL) {
Sercom *uart = sercom_instance[self->id];
#if MICROPY_PY_MACHINE_UART_IRQ
uint16_t mp_irq_flags = 0;
#endif
if (uart->USART.INTFLAG.bit.RXC != 0) {
// Now handler the incoming data
uart_drain_rx_fifo(self, uart);
#if MICROPY_PY_MACHINE_UART_IRQ
if (ringbuf_avail(&self->read_buffer) > 0) {
if (self->mp_irq_trigger & UART_IRQ_RXIDLE) {
if (self->rxidle_state != RXIDLE_INACTIVE) {
if (self->rxidle_state == RXIDLE_STANDBY) {
self->rxidle_timer.base.mode = SOFT_TIMER_MODE_PERIODIC;
soft_timer_insert(&self->rxidle_timer.base, self->rxidle_ms);
}
self->rxidle_state = RXIDLE_ALERT;
}
} else {
mp_irq_flags = SERCOM_USART_INTFLAG_RXC;
}
}
#endif
} else if (uart->USART.INTFLAG.bit.DRE != 0) {
#if MICROPY_HW_UART_TXBUF
// handle the outgoing data
if (ringbuf_avail(&self->write_buffer) > 0) {
if (self->bits <= 8) {
uart->USART.DATA.bit.DATA = ringbuf_get(&self->write_buffer);
} else {
uart->USART.DATA.bit.DATA =
ringbuf_get(&self->write_buffer) | (ringbuf_get(&self->write_buffer) << 8);
}
} else {
#if MICROPY_PY_MACHINE_UART_IRQ
// Set the TXIDLE flag
mp_irq_flags |= SERCOM_USART_INTFLAG_TXC;
#endif
// Stop the DRE interrupt if there is no more data
uart->USART.INTENCLR.reg = SERCOM_USART_INTENCLR_DRE;
}
#endif
}
// Disable the other interrupts, if set by error
uart->USART.INTENCLR.reg = (uint8_t) ~(SERCOM_USART_INTENCLR_DRE | SERCOM_USART_INTENCLR_RXC);
#if MICROPY_PY_MACHINE_UART_IRQ
// Check the flags to see if the uart user handler should be called
// The handler for RXIDLE is called in the timer callback
if (self->mp_irq_trigger & mp_irq_flags) {
self->mp_irq_flags = mp_irq_flags;
mp_irq_handler(self->mp_irq_obj);
}
#endif
}
}
#if MICROPY_PY_MACHINE_UART_IRQ
static void uart_soft_timer_callback(soft_timer_entry_t *self) {
machine_uart_obj_t *uart = ((soft_timer_entry_extended_t *)self)->context;
if (uart->rxidle_state == RXIDLE_ALERT) {
// At the first call, just switch the state
uart->rxidle_state = RXIDLE_ARMED;
} else if (uart->rxidle_state == RXIDLE_ARMED) {
// At the second call, run the irq callback and stop the timer
// by setting the mode to SOFT_TIMER_MODE_ONE_SHOT.
// Calling soft_timer_remove() would fail here.
self->mode = SOFT_TIMER_MODE_ONE_SHOT;
uart->rxidle_state = RXIDLE_STANDBY;
uart->mp_irq_flags = UART_IRQ_RXIDLE;
mp_irq_handler(uart->mp_irq_obj);
}
}
#endif
// Configure the Sercom device
static void machine_sercom_configure(machine_uart_obj_t *self) {
Sercom *uart = sercom_instance[self->id];
// Reset (clear) the peripheral registers.
while (uart->USART.SYNCBUSY.bit.SWRST) {
}
uart->USART.CTRLA.bit.SWRST = 1; // Reset all Registers, disable peripheral
while (uart->USART.SYNCBUSY.bit.SWRST) {
}
uint8_t txpo = self->tx_pad_config.pad_nr;
#if defined(MCU_SAMD21)
if (self->tx_pad_config.pad_nr == 2) { // Map pad 2 to TXPO = 1
txpo = 1;
} else
#endif
if (self->tx_pad_config.pad_nr != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid UART pin"));
}
#if MICROPY_HW_UART_RTSCTS
if ((self->flow_control & FLOW_CONTROL_RTS) && self->rts_pad_config.pad_nr == 2) {
txpo = 2;
mp_hal_set_pin_mux(self->rts, self->rts_pad_config.alt_fct);
}
if ((self->flow_control & FLOW_CONTROL_CTS) && self->cts_pad_config.pad_nr == 3) {
txpo = 2;
mp_hal_set_pin_mux(self->cts, self->cts_pad_config.alt_fct);
}
#endif
uart->USART.CTRLA.reg =
SERCOM_USART_CTRLA_DORD // Data order
| SERCOM_USART_CTRLA_FORM(self->parity != 0 ? 1 : 0) // Enable parity or not
| SERCOM_USART_CTRLA_RXPO(self->rx_pad_config.pad_nr) // Set Pad#
| SERCOM_USART_CTRLA_TXPO(txpo) // Set Pad#
| SERCOM_USART_CTRLA_MODE(1) // USART with internal clock
;
uart->USART.CTRLB.reg =
SERCOM_USART_CTRLB_RXEN // Enable Rx & Tx
| SERCOM_USART_CTRLB_TXEN
| ((self->parity & 1) << SERCOM_USART_CTRLB_PMODE_Pos)
| (self->stop << SERCOM_USART_CTRLB_SBMODE_Pos)
| SERCOM_USART_CTRLB_CHSIZE((self->bits & 7) | (self->bits & 1))
;
while (uart->USART.SYNCBUSY.bit.CTRLB) {
}
// USART is driven by the clock of GCLK Generator 2, freq by get_peripheral_freq()
// baud rate; 65536 * (1 - 16 * 115200/bus_freq)
uint32_t baud = 65536 - ((uint64_t)(65536 * 16) * self->baudrate + get_peripheral_freq() / 2) / get_peripheral_freq();
uart->USART.BAUD.bit.BAUD = baud; // Set Baud
sercom_register_irq(self->id, &common_uart_irq_handler);
// Enable RXC interrupt
uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC;
#if defined(MCU_SAMD21)
NVIC_EnableIRQ(SERCOM0_IRQn + self->id);
#elif defined(MCU_SAMD51)
NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 2);
#endif
#if MICROPY_HW_UART_TXBUF
// Enable DRE interrupt
// SAMD21 has just 1 IRQ for all USART events, so no need for an additional NVIC enable
#if defined(MCU_SAMD51)
NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 0);
#endif
#endif
sercom_enable(uart, 1);
}
void machine_uart_set_baudrate(mp_obj_t self_in, uint32_t baudrate) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
self->baudrate = baudrate;
machine_sercom_configure(self);
}
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
size_t rxbuf_len = self->read_buffer.size - 1;
#if MICROPY_HW_UART_TXBUF
size_t txbuf_len = self->write_buffer.size - 1;
#endif
if (self->bits > 8) {
rxbuf_len /= 2;
#if MICROPY_HW_UART_TXBUF
txbuf_len /= 2;
#endif
}
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, "
"timeout=%u, timeout_char=%u, rxbuf=%d"
#if MICROPY_HW_UART_TXBUF
", txbuf=%d"
#endif
#if MICROPY_HW_UART_RTSCTS
", rts=%q, cts=%q"
#endif
#if MICROPY_PY_MACHINE_UART_IRQ
", irq=%d"
#endif
")",
self->id, self->baudrate, self->bits, _parity_name[self->parity],
self->stop + 1, self->timeout, self->timeout_char, rxbuf_len
#if MICROPY_HW_UART_TXBUF
, txbuf_len
#endif
#if MICROPY_HW_UART_RTSCTS
, self->rts != 0xff ? pin_find_by_id(self->rts)->name : MP_QSTR_None
, self->cts != 0xff ? pin_find_by_id(self->cts)->name : MP_QSTR_None
#endif
#if MICROPY_PY_MACHINE_UART_IRQ
, self->mp_irq_trigger
#endif
);
}
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx,
ARG_timeout, ARG_timeout_char, ARG_rxbuf, ARG_txbuf, ARG_rts, ARG_cts };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
#if MICROPY_HW_UART_RTSCTS
{ MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
#endif
};
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Set baudrate if configured.
if (args[ARG_baudrate].u_int > 0) {
self->baudrate = args[ARG_baudrate].u_int;
}
// Set bits if configured.
if (args[ARG_bits].u_int > 0) {
self->bits = args[ARG_bits].u_int;
}
// Set parity if configured.
if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) {
if (args[ARG_parity].u_obj == mp_const_none) {
self->parity = 0;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) {
self->parity = 1; // odd
} else {
self->parity = 2; // even
}
}
// Set stop bits if configured.
if (args[ARG_stop].u_int > 0) {
self->stop = (args[ARG_stop].u_int - 1) & 1;
}
// Set TX/RX pins if configured.
if (args[ARG_tx].u_obj != mp_const_none) {
self->tx = mp_hal_get_pin_obj(args[ARG_tx].u_obj);
}
if (args[ARG_rx].u_obj != mp_const_none) {
self->rx = mp_hal_get_pin_obj(args[ARG_rx].u_obj);
}
self->flow_control = 0;
#if MICROPY_HW_UART_RTSCTS
// Set RTS/CTS pins if configured.
if (args[ARG_rts].u_obj != mp_const_none) {
self->rts = mp_hal_get_pin_obj(args[ARG_rts].u_obj);
self->rts_pad_config = get_sercom_config(self->rts, self->id);
self->flow_control = FLOW_CONTROL_RTS;
}
if (args[ARG_cts].u_obj != mp_const_none) {
self->cts = mp_hal_get_pin_obj(args[ARG_cts].u_obj);
self->cts_pad_config = get_sercom_config(self->cts, self->id);
self->flow_control |= FLOW_CONTROL_CTS;
}
// rts only flow control is not allowed. Otherwise the state of the
// cts pin is undefined.
if (self->flow_control == FLOW_CONTROL_RTS) {
mp_raise_ValueError(MP_ERROR_TEXT("cts missing for flow control"));
}
#endif
// Set timeout if configured.
if (args[ARG_timeout].u_int >= 0) {
self->timeout = args[ARG_timeout].u_int;
}
// Set timeout_char if configured.
if (args[ARG_timeout_char].u_int >= 0) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// Set the RX buffer size if configured.
size_t rxbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_rxbuf].u_int > 0) {
rxbuf_len = args[ARG_rxbuf].u_int;
if (rxbuf_len < MIN_BUFFER_SIZE) {
rxbuf_len = MIN_BUFFER_SIZE;
} else if (rxbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large"));
}
}
#if MICROPY_HW_UART_TXBUF
// Set the TX buffer size if configured.
size_t txbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_txbuf].u_int > 0) {
txbuf_len = args[ARG_txbuf].u_int;
if (txbuf_len < MIN_BUFFER_SIZE) {
txbuf_len = MIN_BUFFER_SIZE;
} else if (txbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large"));
}
}
#endif
// Double the buffer lengths for 9 bit transfer
if (self->bits > 8) {
rxbuf_len *= 2;
#if MICROPY_HW_UART_TXBUF
txbuf_len *= 2;
#endif
}
// Initialise the UART peripheral if any arguments given, or it was not initialised previously.
if (n_args > 0 || kw_args->used > 0 || self->new) {
self->new = false;
// Check the rx/tx pin assignments
if (self->tx == 0xff || self->rx == 0xff || (self->tx / 4) != (self->rx / 4)) {
mp_raise_ValueError(MP_ERROR_TEXT("Non-matching or missing rx/tx"));
}
self->rx_pad_config = get_sercom_config(self->rx, self->id);
self->tx_pad_config = get_sercom_config(self->tx, self->id);
// Make sure timeout_char is at least as long as a whole character (13 bits to be safe).
uint32_t min_timeout_char = 13000 / self->baudrate + 1;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
// Allocate the RX/TX buffers.
ringbuf_alloc(&(self->read_buffer), rxbuf_len + 1);
#if MICROPY_HW_UART_TXBUF
ringbuf_alloc(&(self->write_buffer), txbuf_len + 1);
#endif
// Step 1: Configure the Pin mux.
mp_hal_set_pin_mux(self->rx, self->rx_pad_config.alt_fct);
mp_hal_set_pin_mux(self->tx, self->tx_pad_config.alt_fct);
// Next: Set up the clocks
enable_sercom_clock(self->id);
// Configure the sercom module
machine_sercom_configure(self);
}
}
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get UART bus.
int uart_id = mp_obj_get_int(args[0]);
if (uart_id < 0 || uart_id > SERCOM_INST_NUM) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
// Create the UART object and fill it with defaults.
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->id = uart_id;
self->baudrate = DEFAULT_UART_BAUDRATE;
self->bits = 8;
self->stop = 0;
self->timeout = 1;
self->timeout_char = 1;
self->tx = 0xff;
self->rx = 0xff;
#if MICROPY_HW_UART_RTSCTS
self->rts = 0xff;
self->cts = 0xff;
#endif
#if MICROPY_PY_MACHINE_UART_IRQ
self->mp_irq_obj = NULL;
self->rxidle_state = RXIDLE_INACTIVE;
#endif
self->new = true;
MP_STATE_PORT(sercom_table[uart_id]) = self;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
// Check if it is the active object.
if (MP_STATE_PORT(sercom_table)[self->id] == self) {
Sercom *uart = sercom_instance[self->id];
// Disable interrupts and de-register the IRQ
if (uart) {
uart->USART.INTENCLR.reg = 0xff;
sercom_register_irq(self->id, NULL);
sercom_enable(uart, 0);
}
}
}
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
return ringbuf_avail(&self->read_buffer);
}
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
Sercom *uart = sercom_instance[self->id];
return uart->USART.INTFLAG.bit.DRE
#if MICROPY_HW_UART_TXBUF
&& ringbuf_avail(&self->write_buffer) == 0
#endif
&& uart->USART.INTFLAG.bit.TXC;
}
static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
uint32_t break_time_us = 13 * 1000000 / self->baudrate;
// Wait for the tx buffer to drain.
#if MICROPY_HW_UART_TXBUF
while (ringbuf_avail(&self->write_buffer) > 0) {
MICROPY_EVENT_POLL_HOOK
}
#endif
// Wait for the TX queue & register to clear
// Since the flags are not safe, just wait sufficiently long.
mp_hal_delay_us(2 * break_time_us);
// Disable MUX
PORT->Group[self->tx / 32].PINCFG[self->tx % 32].bit.PMUXEN = 0;
// Set TX pin to low for break time
mp_hal_pin_low(self->tx);
mp_hal_delay_us(break_time_us);
mp_hal_pin_high(self->tx);
// Enable Mux again
mp_hal_set_pin_mux(self->tx, self->tx_pad_config.alt_fct);
}
#if MICROPY_PY_MACHINE_UART_IRQ
// Configure the timer used for IRQ_RXIDLE
static void uart_irq_configure_timer(machine_uart_obj_t *self, mp_uint_t trigger) {
self->rxidle_state = RXIDLE_INACTIVE;
if (trigger & UART_IRQ_RXIDLE) {
// The RXIDLE event is always a soft IRQ.
self->mp_irq_obj->ishard = false;
mp_int_t ms = 13000 / self->baudrate + 1;
if (ms < RXIDLE_TIMER_MIN) {
ms = RXIDLE_TIMER_MIN;
}
self->rxidle_ms = ms;
self->rxidle_timer.context = self;
soft_timer_static_init(
&self->rxidle_timer.base,
SOFT_TIMER_MODE_PERIODIC,
ms,
uart_soft_timer_callback
);
self->rxidle_state = RXIDLE_STANDBY;
}
}
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_irq_configure_timer(self, new_trigger);
self->mp_irq_trigger = new_trigger;
return 0;
}
static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
return self->mp_irq_flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->mp_irq_trigger;
}
return 0;
}
static const mp_irq_methods_t uart_irq_methods = {
.trigger = uart_irq_trigger,
.info = uart_irq_info,
};
static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) {
if (self->mp_irq_obj == NULL) {
self->mp_irq_trigger = 0;
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
}
if (any_args) {
// Check the handler
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
}
// Check the trigger
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
if (trigger != 0 && not_supported) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported);
}
uart_irq_configure_timer(self, trigger);
self->mp_irq_obj->handler = handler;
self->mp_irq_obj->ishard = args[MP_IRQ_ARG_INIT_hard].u_bool;
self->mp_irq_trigger = trigger;
}
return self->mp_irq_obj;
}
#endif
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
Sercom *uart = sercom_instance[self->id];
uint64_t t = mp_hal_ticks_ms_64() + self->timeout;
uint64_t timeout_char = self->timeout_char;
uint8_t *dest = buf_in;
// Check that size is even for 9 bit transfers.
if ((self->bits >= 9) && (size & 1)) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
for (size_t i = 0; i < size;) {
// Wait for the first/next character
while (ringbuf_avail(&self->read_buffer) == 0) {
if (mp_hal_ticks_ms_64() > t) { // timed out
if (i <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return i;
}
}
MICROPY_EVENT_POLL_HOOK
}
*dest++ = ringbuf_get(&(self->read_buffer));
i++;
if (self->bits >= 9 && i < size) {
*dest++ = ringbuf_get(&(self->read_buffer));
i++;
}
t = mp_hal_ticks_ms_64() + timeout_char;
// (Re-)Enable RXC interrupt
if ((uart->USART.INTENSET.reg & SERCOM_USART_INTENSET_RXC) == 0) {
uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC;
}
}
return size;
}
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
size_t i = 0;
const uint8_t *src = buf_in;
Sercom *uart = sercom_instance[self->id];
uint64_t t = mp_hal_ticks_ms_64() + self->timeout;
uint8_t bits = self->bits;
// Check that size is even for 9 bit transfers.
if ((bits >= 9) && (size & 1)) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
#if MICROPY_HW_UART_TXBUF
#if MICROPY_PY_MACHINE_UART_IRQ
// Prefill the FIFO to get rid of the initial IRQ_TXIDLE event
// Do not care for 9 Bit transfer here since the UART is not yet started.
while (i < size && ringbuf_free(&(self->write_buffer)) > 0) {
ringbuf_put(&(self->write_buffer), *src++);
i++;
}
uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_DRE; // kick off the IRQ
#endif
while (i < size) {
// Wait for the first/next character to be sent.
while (ringbuf_free(&(self->write_buffer)) == 0) {
if (mp_hal_ticks_ms_64() > t) { // timed out
if (i <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return i;
}
}
MICROPY_EVENT_POLL_HOOK
}
if (bits >= 9) {
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
ringbuf_put(&(self->write_buffer), *src++);
ringbuf_put(&(self->write_buffer), *src++);
i += 2;
MICROPY_END_ATOMIC_SECTION(atomic_state);
} else {
ringbuf_put(&(self->write_buffer), *src++);
i += 1;
}
uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_DRE; // kick off the IRQ
}
#else
while (i < size) {
while (!(uart->USART.INTFLAG.bit.DRE)) {
if (mp_hal_ticks_ms_64() > t) { // timed out
if (i <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return i;
}
}
MICROPY_EVENT_POLL_HOOK
}
if (self->bits > 8 && i < (size - 1)) {
uart->USART.DATA.bit.DATA = *(uint16_t *)src;
i++;
src += 2;
} else {
uart->USART.DATA.bit.DATA = *src++;
}
i++;
}
#endif
return size;
}
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
Sercom *uart = sercom_instance[self->id];
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && (uart->USART.INTFLAG.bit.RXC != 0 || ringbuf_avail(&self->read_buffer) > 0)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && (uart->USART.INTFLAG.bit.DRE != 0
#if MICROPY_HW_UART_TXBUF
|| ringbuf_avail(&self->write_buffer) > 0
#endif
)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is defined by the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint64_t timeout = mp_hal_ticks_ms_64() + (3
#if MICROPY_HW_UART_TXBUF
+ self->write_buffer.size
#endif
) * 13000 * 2 / self->baudrate;
do {
if (mp_machine_uart_txdone(self)) {
return 0;
}
MICROPY_EVENT_POLL_HOOK
} while (mp_hal_ticks_ms_64() < timeout);
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}