-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwasserstein_utils.py
132 lines (101 loc) · 4.35 KB
/
wasserstein_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import scipy.io as sio
import tensorflow as tf
import tensorflow.keras.utils
import tensorflow.keras.backend as K
def generateTheta(L,endim):
theta_=np.random.normal(size=(L,endim))
for l in range(L):
theta_[l,:]=theta_[l,:]/np.sqrt(np.sum(theta_[l,:]**2))
return theta_
def oneDWassersteinV3(p,q):
# ~10 Times faster than V1
# W2=(tf.nn.top_k(tf.transpose(p),k=tf.shape(p)[0]).values-
# tf.nn.top_k(tf.transpose(q),k=tf.shape(q)[0]).values)**2
# return K.mean(W2, axis=-1)
psort=tf.sort(p,axis=0)
qsort=tf.sort(q,axis=0)
pqmin=tf.minimum(K.min(psort,axis=0),K.min(qsort,axis=0))
psort=psort-pqmin
qsort=qsort-pqmin
n_p=tf.shape(p)[0]
n_q=tf.shape(q)[0]
pcum=tf.multiply(tf.cast(tf.maximum(n_p,n_q),dtype='float32'),tf.divide(tf.cumsum(psort),tf.cast(n_p,dtype='float32')))
qcum=tf.multiply(tf.cast(tf.maximum(n_p,n_q),dtype='float32'),tf.divide(tf.cumsum(qsort),tf.cast(n_q,dtype='float32')))
indp=tf.cast(tf.floor(tf.linspace(0.,tf.cast(n_p,dtype='float32')-1.,tf.minimum(n_p,n_q)+1)),dtype='int32')
indq=tf.cast(tf.floor(tf.linspace(0.,tf.cast(n_q,dtype='float32')-1.,tf.minimum(n_p,n_q)+1)),dtype='int32')
phat=tf.gather(pcum,indp[1:],axis=0)
phat=K.concatenate((K.expand_dims(phat[0,:],0),phat[1:,:]-phat[:-1,:]),0)
qhat=tf.gather(qcum,indq[1:],axis=0)
qhat=K.concatenate((K.expand_dims(qhat[0,:],0),qhat[1:,:]-qhat[:-1,:]),0)
W2=K.mean((phat-qhat)**2,axis=0)
return W2
def sWasserstein_hd(P,Q,theta,nclass,Cp=None,Cq=None):
# High dimensional variant of the sWasserstein function
'''
P, Q - representations in embedding space between target & source
theta - random matrix of directions
'''
p=K.dot(K.reshape(P, (-1, nclass)), K.transpose(theta))
q=K.dot(K.reshape(Q, (-1, nclass)), K.transpose(theta))
sw=K.mean(oneDWassersteinV3(p,q))
return sw
def sWasserstein(P,Q,theta,nclass,Cp=None,Cq=None):
'''
P, Q - representations in embedding space between target & source
theta - random matrix of directions
'''
p=K.dot(P,K.transpose(theta))
q=K.dot(Q,K.transpose(theta))
sw=K.mean(oneDWassersteinV3(p,q))
return sw
def reinitLayers(model):
# This code reinitialize a keras/tf model
session = K.get_session()
for layer in model.layers:
if isinstance(layer, keras.engine.topology.Container):
reinitLayers(layer)
continue
for v in layer.__dict__:
v_arg = getattr(layer,v)
if hasattr(v_arg,'initializer'):
initializer_method = getattr(v_arg, 'initializer')
initializer_method.run(session=session)
def randperm(X,y):
assert X.shape[0]==y.shape[0]
ind=np.random.permutation(X.shape[0])
X=X[ind,...]
y=y[ind,...]
return X,y
def batchGenerator(label,batchsize,nofclasses=2,seed=1,noflabeledsamples=None):
N=label.shape[0]
if not(noflabeledsamples):
M=int(batchsize/nofclasses)
ind=[]
for i in range(nofclasses):
labelIndex=np.argwhere(label[:,i]).squeeze()
randInd=np.random.permutation(labelIndex.shape[0])
ind.append(labelIndex[randInd[:M]])
ind=np.asarray(ind).reshape(-1)
labelout=label[ind]
else:
np.random.seed(seed)
portionlabeled=min(batchsize/2,noflabeledsamples*nofclasses)
M=portionlabeled/nofclasses
indsupervised=[]
indunsupervised=np.array([])
for i in range(nofclasses):
labelIndex=np.argwhere(label[:,i]).squeeze()
randInd=np.random.permutation(labelIndex.shape[0])
indsupervised.append(labelIndex[randInd[:noflabeledsamples]])
indunsupervised=np.append(indunsupervised,np.array(labelIndex[randInd[noflabeledsamples:]]))
np.random.seed()
ind=[]
for i in range(nofclasses):
ind.append(np.random.permutation(indsupervised[i])[:M])
ind=np.asarray(ind).reshape(-1)
indunsupervised=np.random.permutation(indunsupervised)
labelout=np.zeros((nofclasses*(batchsize/nofclasses),nofclasses))
labelout[:portionlabeled]=label[ind,:]
ind=np.concatenate((ind,indunsupervised[:nofclasses*(batchsize/nofclasses)-ind.shape[0]]))
return ind.astype(int),labelout