-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsunpos.py
692 lines (568 loc) · 22.8 KB
/
sunpos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# -*- coding: utf-8 -*-
# pylint: disable=missing-module-docstring, missing-class-docstring, missing-function-docstring
# pylint: disable=non-ascii-name
# sunpos - Compute the position of the sun relative to
# Earth's orbit, according to the current date and time and
# the observer's position on Earth.
#
# Aaron Mansheim
# created: 2011-06-22
#
# Based closely on: http://stjarnhimlen.se/comp/tutorial.html 2009-07-02
# The similar code sunriset.c by the same author is in the public domain.
#
# Ultimately my purpose is to make this as clear as possible to
# anyone who understands a) basics of the Python programming language
# and b) how the sine and cosine functions relate to a point on
# the circumference of the unit circle.
import dataclasses
from math import sqrt, hypot, degrees, fsum, fmod
from degrees import Degrees, sin, cos
# Regions of this file:
# 1 coordinate_systems
# 2 time_and_angle
# 3 astronomical_time_and_angle (functions)
# 4 astronomical_coordinate_systems
# 5 astronomical_coordinate_transformations (functions)
# 6 astronomical_predictions (functions)
# 7 orbits
# 8 the_Moon (functions)
# 1 -------------------- coordinate_systems
@dataclasses.dataclass
class Cartesian2d:
x: float
y: float
# Is not under test
def tuple(self) -> tuple[float, float]:
return self.x, self.y
def polar(self) -> 'Polar':
return Polar.from_cartesian2d(self)
def rotate(self, θ: Degrees) -> 'Cartesian2d':
return self.polar().rotate(θ).cartesian2d()
@classmethod
def from_polar(cls, p: 'Polar') -> 'Cartesian2d':
x = p.r * p.θ.cos()
y = p.r * p.θ.sin()
self = cls.__new__(cls)
self.__class__.__init__(self, x, y)
return self
@classmethod
def from_eccentric(cls, E: Degrees, e) -> 'Cartesian2d':
# Would this be easy to understand from a diagram?
x = E.cos() - e
# == radius * cos(θ)
y = E.sin() * sqrt(1 - e ** 2)
# == radius * sin(θ)
self = cls.__new__(cls)
self.__class__.__init__(self, x, y)
return self
@dataclasses.dataclass
class Polar:
r: float
θ: Degrees
def tuple(self) -> tuple[float, Degrees]:
return self.r, self.θ
def cartesian2d(self) -> Cartesian2d:
return Cartesian2d.from_polar(self)
def rotate(self, Δθ: Degrees) -> 'Polar':
return Polar(self.r, Degrees(self.θ + Δθ).rev())
@classmethod
def from_cartesian2d(cls, p: Cartesian2d) -> 'Polar':
r = hypot(p.x, p.y)
θ = Degrees.atan2(p.y, p.x).rev()
self = cls.__new__(cls)
self.__class__.__init__(self, r, θ)
return self
@dataclasses.dataclass
class Cartesian3d:
x: float
y: float
z: float
# Is not under test
def tuple(self) -> tuple[float, float, float]:
return self.x, self.y, self.z
def spherical(self) -> 'Spherical':
return Spherical.from_cartesian3d(self)
def cylindrical(self) -> 'Cylindrical':
return Cylindrical.from_cartesian3d(self)
def onto_xy_plane(self) -> Cartesian2d:
return Cartesian2d(self.x, self.y)
def rotate_about_x(self, θ: Degrees) -> 'Cartesian3d':
p = Cartesian2d(self.y, self.z).rotate(θ)
return self.__class__(self.x, p.x, p.y)
def decline_about_y(self, θ: Degrees) -> 'Cartesian3d':
# Equivalent to:
# (lambda neg_y, x, z: (x, -neg_y, z)) (
# *Cartesian3d(-y, x, z).rotate_about_x(90 - θ).tuple()
# )
# This (-y, x, z) is just (x, y, z) rotated around z.
point = Cartesian2d(self.x, self.z).rotate(Degrees(90 - θ))
return self.__class__(point.x, self.y, point.y)
@classmethod
def from_cylindrical(cls, p) -> 'Cartesian3d':
q = Polar(p.cylindrical_radius, p.longitude).cartesian2d()
z = p.h
self = cls.__new__(cls)
self.__class__.__init__(self, q.x, q.y, z)
return self
@classmethod
def from_spherical(cls, p) -> 'Cartesian3d':
q = p.cylindrical().cartesian3d()
self = cls.__new__(cls)
self.__class__.__init__(self, q.x, q.y, q.z)
return self
@dataclasses.dataclass
class Cylindrical:
cylindrical_radius: float
h: float
longitude: Degrees
# Is not under test
def tuple(self) -> tuple[float, float, Degrees]:
return self.cylindrical_radius, self.h, self.longitude
def spherical(self) -> 'Spherical':
return Spherical.from_cylindrical(self)
def cartesian3d(self) -> Cartesian3d:
return Cartesian3d.from_cylindrical(self)
@classmethod
def from_spherical(cls, p) -> 'Cylindrical':
q = p.onto_meridian_plane().cartesian2d()
self = cls.__new__(cls)
self.__class__.__init__(self, q.x, q.y, p.longitude)
return self
@classmethod
def from_cartesian3d(cls, p) -> 'Cylindrical':
q = p.onto_xy_plane().polar()
h = p.z
return Cylindrical(q.r, h, q.θ)
@dataclasses.dataclass
class Spherical:
radius: float
latitude: Degrees
longitude: Degrees
def tuple(self) -> tuple[float, Degrees, Degrees]:
return self.radius, self.latitude, self.longitude
def cylindrical(self) -> Cylindrical:
return Cylindrical.from_spherical(self)
def cartesian3d(self) -> Cartesian3d:
return Cartesian3d.from_spherical(self)
# Is not under test
def onto_equator_plane(self) -> Polar:
return Polar(self.radius, self.longitude)
def onto_meridian_plane(self) -> Polar:
return Polar(self.radius, self.latitude)
@classmethod
def from_cylindrical(cls, p: Cylindrical) -> 'Spherical':
q = Cartesian2d(p.cylindrical_radius, p.h).polar()
self = cls.__new__(cls)
self.__class__.__init__(self, q.r, q.θ, p.longitude)
return self
@classmethod
def from_cartesian3d(cls, p: Cartesian3d) -> 'Spherical':
return p.cylindrical().spherical()
# 2 -------------------- time_and_angle
@dataclasses.dataclass
class Date:
year: int
month: int
day: int
def day_number(self) -> float:
"""
This formula models the common astronomical calendar,
which coincides with the Gregorian calendar for years 1901-2099.
On the other hand it is actually a Julian calendar in that it has
no exceptions to the rule that every fourth year is a leap year.
"""
return (
367 * self.year
- (7 * (self.year + (self.month + 9) // 12)) // 4
+ (275 * self.month) // 9
+ self.day
- 730530)
class Seconds(float):
def minutes(self) -> float:
return self / 60.0
@classmethod
def fromhours(cls, hours: float) -> 'Seconds':
return cls(3600 * hours)
@classmethod
def fromminutes(cls, minutes: float) -> 'Seconds':
return cls(60 * minutes)
class Arcdegrees(Degrees):
def hours(self) -> float:
return self * 24 / 360.0
def arcminutes(self) -> float:
return 60 * self
def arcseconds(self) -> Seconds:
return Seconds(3600 * self)
@classmethod
def fromhours(cls, hours: float) -> 'Arcdegrees':
return cls(hours * 360 / 24.0).rev()
# 3 -------------------- astronomical_time_and_angle
def toGMST0(Ls: Degrees) -> Arcdegrees:
"""
Sidereal time (in other words, right ascension in hours)
at the 00:00 meridian at Greenwich right now.
"""
return Arcdegrees(Degrees(Ls + 180).rev()).hours()
def to_sidereal_time(GMST0, UT, terrestrial_longitude: Degrees) -> float:
"""
Locally adjusted sidereal time: more info at function toGMST0.
"""
return fmod(GMST0 + UT + Arcdegrees(terrestrial_longitude).hours(), 24.0)
def hour_angle(sidereal_time, RA) -> float:
return fmod(sidereal_time - RA, 24.0)
def obliquity_of_the_ecliptic(day_number) -> float:
"""
Inclination of Earth's axis of rotation
to its plane of revolution.
"""
return 23.4393 - 3.563E-7 * day_number
def ecliptic_anomaly_to_longitude(
longitude_of_periapsis: Degrees,
angle_from_periapsis: Degrees,
) -> Degrees:
"""
Ecliptic longitude, sometimes written simply as
"longitude", has its zero at the ascending node.
For the Sun-Earth system, the ascending node is
the vernal point (if I'm not mistaken!?).
In contrast to longitude, the mean anomaly and true
anomaly have their zero at periapsis. For the
Sun-Earth system, the periapsis is perihelion.
When we say "mean longitude" of the Sun, we mean
"mean ecliptic longitude" with zero longitude at the
vernal point. We are not referring to the terrestrial
longitude or to the celestial longitude (also known
as right ascension) that are zero at a meridian.
We should also explain "mean longitude" vs. "longitude".
The mean longitude progresses quite cyclically,
while the (true) longitude goes elliptically.
Both complete one revolution in the same time.
True longitude measures the actual accelerating
and decelerating position of a body. Mean longitude
averages out the position over the whole revolution
to measure out a fictitious steady motion.
"""
return Degrees(longitude_of_periapsis + angle_from_periapsis).rev()
def sun_earth_elements(day_number) -> tuple[Degrees, float, float, Degrees]:
"""
Why this function is named "sun_earth_elements":
We're primarily concerned with the Earth-based observer,
so we'll use these orbital elements to determine how the Sun
moves through Earth's sky. Of course, outside of that frame
it is more sensible to interpret these elements vice versa,
with Earth moving around the Sun.
"""
ω = Degrees(282.9404 + 4.70935E-5 * day_number).rev() # longitude of perihelion
a = 1.000000 # mean_distance, in a.u.
e = 0.016709 - 1.151E-9 * day_number # eccentricity
Ms = Degrees(356.0470 + 0.9856002585 * day_number).rev() # mean anomaly
return (ω, a, e, Ms)
def eccentric_anomaly_first_approximation(M: Degrees, e) -> Degrees:
"""
This truncated Taylor series is claimed accurate enough for a small
eccentricity such as that of the Sun-Earth orbit (0.017).
Properly the eccentric anomaly is the solution E
of Kepler's equation in mean anomaly M and eccentricity e:
M = E - e sin(E).
Thanks to Paul Schlyter himself for clarifying this in a
private email which, frankly, I have not yet fully analyzed.
"""
return Degrees(
M
+ degrees(e * M.sin())
* (1 + e * M.cos())).rev()
# Note if we write E(n+1) = M + e sin (E(n)) and iterate,
# we get this, which is supposedly equivalent!?
# E(1) = M + e sin (E(0))
# E(2) = M + e sin ( M + e sin (E(0)) )
# = M + e sin (M) cos (e sin (E(0))) + e cos (M) sin (e sin (E(0)) )
# E(3) = M + e sin ( M + e sin ( M + e sin ( E(0) ) ) )
def iterate_for_eccentric_anomaly(M, e, E0: Degrees) -> Degrees:
# Approximately invert Kepler's equation M = E - e sin E
# by Newton's method, E1 = E0 - f(E0) / f'(E0),
# where f(E) = E - e sin(E) - M,
# so that Newton's method approaches E such that 0 = E - e sin(E) - M.
def iterate_once_for_eccentric_anomaly(M, e, E0: Degrees) -> Degrees:
# Take one step of Newton's method, E1 = E0 - f(E0) / f'(E0).
# Here f(E) = E - e sin(E) - M, so that f'(E) = 1 - e cos(E). That is,
# E1 = E0 - (E - e sin(E) - M) / (1 - e cos(E)).
radians = E0 - (E0 - degrees(e * E0.sin()) - M) / (1 - e * E0.cos())
return Degrees(radians)
E1: Degrees = E0
E0 = Degrees(0)
k = 0
while abs(E1 - E0) >= 0.005 and k < 30:
k += 1
E0 = E1
E1 = iterate_once_for_eccentric_anomaly(M, e, E0)
return E1
# 4 -------------------- astronomical_coordinate_systems
@dataclasses.dataclass
class Celestial:
RA: float
Decl: Degrees
@dataclasses.dataclass
class Geographic:
latitude: Degrees
longitude: Degrees
@dataclasses.dataclass
class Horizontal:
altitude: float
azimuth: float
def tuple(self) -> tuple[float, float]:
return (self.altitude, self.azimuth)
@classmethod
def from_celestial(cls, mlon: Degrees,
celestial: Celestial,
hours_UT,
geographic: Geographic) -> 'Horizontal':
_distance, altitude, azimuth = Spherical(
1.0,
celestial.Decl,
Arcdegrees.fromhours(hour_angle(
to_sidereal_time(toGMST0(mlon), hours_UT, geographic.longitude),
Arcdegrees(celestial.RA).hours(),
)),
).cartesian3d().decline_about_y(geographic.latitude).spherical().tuple()
azimuth = Degrees(azimuth + 180).rev()
return cls(altitude, azimuth)
# 5 -------------------- astronomical_coordinate_transformations
def ecliptic_to_celestial(distance, latitude, longitude: Degrees, obliquity):
(distance1, Decl, RA) = Spherical(
distance,
latitude,
longitude
).cartesian3d().rotate_about_x(obliquity).spherical().tuple()
return (distance1, Decl, RA)
def position_from_plane_of_orbit_to_ecliptic(polar: Polar, Ω: Degrees, i: Degrees, ω):
# TODO: break this down to easily understood operations
# using angle sum formulas etc.
# _ _ _ _ _
# cos(-x) = cos(x) 1 ┆╳ ╲ ╱┆╳ ╲ ╱┆ cos
# sin(-x) = -sin(x) 0 ╱┄╲┄╲┄╱┄╱┄╲┄╲┄╱┄╱ sin
# sin(x) = cos(x - 90) -1 ┆ ╲_╳_╱┆ ╲_╳_╱┆
# sin(x - 90) = -cos(x) -2pi 0 2pi
#
# a - b = a + (-b)
# cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
# cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
# sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
# sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
return Cartesian3d(
polar.r * (
Ω.cos() * cos(polar.θ + ω)
- Ω.sin() * sin(polar.θ + ω) * i.cos()
),
polar.r * (
Ω.sin() * cos(polar.θ + ω)
+ Ω.cos() * sin(polar.θ + ω) * i.cos()
),
polar.r * sin(polar.θ + ω) * i.sin(),
)
def sun_earth_ecliptic_to_celestial(distance, true_lon: Degrees, obliquity: Degrees):
# equivalent to:
# ecliptic_to_celestial(distance, 0.0, true_lon, obliquity)
p = Polar(distance, true_lon).cartesian2d()
q = Cartesian3d(p.x, p.y, 0.0).rotate_about_x(obliquity).spherical()
return Celestial(RA=q.longitude, Decl=q.latitude)
# 6 -------------------- astronomical_predictions
# return: (distance, true_longitude, Ls, obliquity, )
def date_to_sun_earth_ecliptic(date: Date):
# return: (ω, a, e, M, obliquity, )
def sun_earth_elements_and_obliquity(
date: Date) -> tuple[Degrees, float, float, Degrees, float]:
d = date.day_number()
return sun_earth_elements(d) + (obliquity_of_the_ecliptic(d), )
# return: Polar(distance, ecliptic_angle)
def ecliptic_polar(Ms: Degrees, e) -> Polar:
return Cartesian2d.from_eccentric(
eccentric_anomaly_first_approximation(Ms, e),
e,
).polar()
# return: (distance, true_longitude, Ls, obliquity, )
def longitudes(Ms: Degrees, e, ω: Degrees, obliquity: Degrees):
p = ecliptic_polar(Ms, e)
(distance, ν) = p.r, p.θ
return (
distance,
ecliptic_anomaly_to_longitude(ω, ν),
ecliptic_anomaly_to_longitude(ω, Ms),
obliquity,
)
# return: (distance, true_longitude, Ls, obliquity, )
def date_to_sun_earth_ecliptic_1(date: Date):
(ω, _a, e, Ms, obliquity, ) = sun_earth_elements_and_obliquity(
date
)
return longitudes(Ms, e, ω, obliquity)
return date_to_sun_earth_ecliptic_1(date)
def time_and_location_to_sun_horizontal(date: Date,
hours_UT, geographic: Geographic):
def sun_earth_ecliptic_to_celestial_for_horizontal(
distance0,
true_longitude,
Ls,
obliquity: Degrees,
):
return (Ls, sun_earth_ecliptic_to_celestial(
distance0,
true_longitude,
obliquity,
), hours_UT, geographic)
(altitude, azimuth) = Horizontal.from_celestial(
*sun_earth_ecliptic_to_celestial_for_horizontal(
*date_to_sun_earth_ecliptic(date)
)
).tuple()
return (altitude, azimuth)
# 7 -------------------- orbits
@dataclasses.dataclass
class OrbitalElements:
'''
(☉,♈︎) Let ☉∈R³. Without loss of generality, let ☉ be the origin.
Let ♈︎∈R³ and ☉≠♈︎. Call ♈︎ the vernal point.
(☊) Let N∈R³ and N⟂♈︎. Then there exists a unique plane P such that ☉∈P and P⟂N.
We will use P as a reference plane. Let ☊∈P and ☊≠☉.
Call ☊ the ascending node.
(m∠aob) Recall that for all a,b,o∈R³ such that a≠o and b≠o,
m∠aob=arccos(â₀⋅b̂₀), where a₀=a-o, b₀=b-o,
â₀=a₀/‖a₀‖, and b̂₀=b₀/‖b₀‖. Recall that m∠aob∈[0,π].
(Ω,i) Define the inclination i as follows.
Let Ω=m∠♈︎☉☊ . Call Ω the longitude of the ascending node.
Let I∈R³, such that I⟂☊ and I⋅N>0.
Let i=m∠(N×☊)☉I so that i∈[0,π).
Define the orbital plane as the plane containing points ☉, ☊, and I.
(e,a,ω) Define an orbit as the ellipse in the orbital plane having
a focus at ☉, eccentricity e, measure a of semimajor axis,
and angle ω from ☊ to periapsis.
Define the eccentricity of the orbit as e = sqrt(1 - (b/a)²),
where b is measure of semiminor axis.
Define the periapsis as the vector from ☉ to the nearest point on the orbit.
(ν) Specify the location of the body in the orbit by the true anomaly ν.
The true anomaly is the angle at ☉ between periapsis and the body.
(E) Alternatively, specify the location of the body in the orbit by the
eccentric anomaly E, which is related to ν as follows:
tan E = sqrt(1-e²) sin ν / (e + cos ν).
(M) Alternatively, specify the location of the body in the orbit by the
mean anomaly M, which is related to E as follows:
M = E - e sin E.
'''
Ω: Degrees
i: Degrees
ω: Degrees
a: float
e: float
M: Degrees
# 8 -------------------- the_Moon
def moon_elements(d) -> OrbitalElements:
return OrbitalElements(
Ω = Degrees(125.1228 - 0.0529538083 * d).rev(), # Long asc. node
i = Degrees(5.1454), # Inclination
ω = Degrees(318.0634 + 0.1643573223 * d).rev(), # Arg. of perigee
a = 60.2666, # Mean distance,
# in Earth equatorial radii
e = 0.054900, # Eccentricity
M = Degrees(115.3654 + 13.0649929509 * d).rev(), # Mean anomaly
)
def moon_perturbation_arguments(Ls, moon_N, moon_ω, Mm, Ms) -> tuple[
Degrees, Degrees, Degrees, Degrees, Degrees, Degrees]:
Lm = moon_N + moon_ω + Mm # moon mean longitude
(
D, # moon mean elongation
F, # moon argument of latitude
) = (
Degrees(Lm - Ls).rev(),
Degrees(Lm - moon_N).rev(),
)
return (
Ls,
Degrees(Lm).rev(),
Ms, # sun mean anomaly
Mm, # moon mean anomaly
D,
F)
def moon_2_distance_perturbation_terms( _Ls, _Lm, _Ms, Mm, D, _F) -> tuple[float, float]:
# all & only the terms larger than 0.1 Earth radii
return (
-0.58 * cos(Mm - 2 * D),
-0.46 * cos(2 * D),
)
def moon_5_latitude_perturbation_terms(
_Ls, _Lm, _Ms, Mm, D, F) -> tuple[ float, float, float, float, float]:
# All & only the terms larger than 0.01 degrees
# aiming for 1-2 arcmin accuracy.
# Even with the first term the error is usually under 0.15 degree.
return (
-0.173 * sin(F - 2 * D),
-0.055 * sin(Mm - F - 2 * D),
-0.046 * sin(Mm + F - 2 * D),
+0.033 * sin(F + 2 * D),
+0.017 * sin(2 * Mm + F),
)
def moon_12_longitude_perturbation_terms( _Ls, _Lm, Ms, Mm, D, F) -> tuple[
float, float, float, float, float, float,
float, float, float, float, float, float]:
# All & only the terms larger than 0.01 degrees,
# aiming for 1-2 arcmin accuracy.
# Even with the first two terms the error is usually under 0.25 degree.
# These might come from EPL.
return (
-1.274 * sin(Mm - 2 * D), # Evection (Ptolemy)
+0.658 * sin(2 * D), # Variation (Tycho Brahe)
-0.186 * sin(Ms), # Yearly equation (Tycho Brahe)
-0.059 * sin(2 * Mm - 2 * D),
-0.057 * sin(Mm - 2 * D + Ms),
+0.053 * sin(Mm + 2 * D),
+0.046 * sin(2 * D - Ms),
+0.041 * sin(Mm - Ms),
-0.035 * sin(D), # Parallactic equation
-0.031 * sin(Mm + Ms),
-0.015 * sin(2 * F - 2 * D),
+0.011 * sin(Mm - 4 * D),
)
def cartesian2d_in_plane_of_orbit(E: Degrees, e, distance):
return Cartesian2d(
distance * (E.cos() - e),
distance * sqrt(1 - e ** 2) * E.sin(),
)
def date_and_sun_mean_to_moon_ecliptic(date: Date,
Ls: Degrees, M: Degrees):
# TODO: Generalize. Much of this is not specific to the moon.
def moon_elliptic_to_polar(a, e, M):
return cartesian2d_in_plane_of_orbit(
iterate_for_eccentric_anomaly(
M,
e,
eccentric_anomaly_first_approximation(M, e)
),
e,
a
).polar()
def moon_elements_to_spherical(elems: OrbitalElements) -> Spherical:
return Spherical.from_cartesian3d(position_from_plane_of_orbit_to_ecliptic(
moon_elliptic_to_polar(elems.a, elems.e, elems.M),
elems.Ω,
elems.i,
elems.ω
))
def moon_elements_to_spherical_perturbation(elems: OrbitalElements) -> map:
args = moon_perturbation_arguments(Ls, elems.Ω, elems.ω, elems.M, M)
return map (
fsum,
(
moon_2_distance_perturbation_terms(*args),
moon_5_latitude_perturbation_terms(*args),
moon_12_longitude_perturbation_terms(*args),
)
)
def date_and_sun_mean_to_moon_ecliptic_1(date: Date):
elems = moon_elements(date.day_number())
return map(sum, zip(
*(
moon_elements_to_spherical(elems).tuple(),
moon_elements_to_spherical_perturbation(elems),
)
))
(pdist, plat, plon) = date_and_sun_mean_to_moon_ecliptic_1(date)
return (pdist, plat, plon)