-
Notifications
You must be signed in to change notification settings - Fork 644
/
Copy pathdatabento_test_request_bars.py
329 lines (272 loc) · 10.3 KB
/
databento_test_request_bars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# ---
# jupyter:
# jupytext:
# formats: py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.6
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown]
# ## imports
# %%
# Note: Use the python extension jupytext to be able to open this python file in jupyter as a notebook
# %%
import pandas as pd
from nautilus_trader.adapters.databento.data_utils import databento_data
from nautilus_trader.adapters.databento.data_utils import load_catalog
from nautilus_trader.backtest.node import BacktestNode
from nautilus_trader.common.enums import LogColor
from nautilus_trader.config import BacktestDataConfig
from nautilus_trader.config import BacktestEngineConfig
from nautilus_trader.config import BacktestRunConfig
from nautilus_trader.config import BacktestVenueConfig
from nautilus_trader.config import DataEngineConfig
from nautilus_trader.config import ImportableStrategyConfig
from nautilus_trader.config import LoggingConfig
from nautilus_trader.config import StrategyConfig
from nautilus_trader.core.datetime import unix_nanos_to_iso8601
from nautilus_trader.model.data import Bar
from nautilus_trader.model.data import BarAggregation
from nautilus_trader.model.data import BarType
from nautilus_trader.model.data import QuoteTick
from nautilus_trader.model.data import TradeTick
from nautilus_trader.model.identifiers import InstrumentId
from nautilus_trader.persistence.config import DataCatalogConfig
from nautilus_trader.trading.strategy import Strategy
# %% [markdown]
# ## parameters
# %%
# import nautilus_trader.adapters.databento.data_utils as db_data_utils
# from nautilus_trader.adapters.databento.data_utils import init_databento_client
# from option_trader import DATA_PATH, DATABENTO_API_KEY # personal library, use your own values especially for DATABENTO_API_KEY
# db_data_utils.DATA_PATH = DATA_PATH
catalog_folder = "historical_bars_catalog"
catalog = load_catalog(catalog_folder)
future_symbols = ["ESU4"]
# small amount of data to download for testing, very cheap
start_time = "2024-07-01T23:40"
end_time = "2024-07-02T00:10"
# a valid databento key can be entered here, the example below runs with already saved test data
# db_data_utils.DATABENTO_API_KEY = DATABENTO_API_KEY
# init_databento_client()
# https://databento.com/docs/schemas-and-data-formats/whats-a-schema
futures_data_bars = databento_data(
future_symbols,
start_time,
end_time,
"ohlcv-1m",
"futures",
catalog_folder,
)
futures_data_quotes = databento_data(
future_symbols,
"2024-07-01T23:58",
"2024-07-02T00:02",
"mbp-1",
"futures",
catalog_folder,
)
futures_data_trades = databento_data(
future_symbols,
"2024-07-01T23:58",
"2024-07-02T00:02",
"trades",
"futures",
catalog_folder,
)
# %% [markdown]
# ## strategy
# %%
class TestHistoricalAggConfig(StrategyConfig, frozen=True):
symbol_id: InstrumentId
historical_start_delay: int = 10
historical_end_delay: int = 1
class TestHistoricalAggStrategy(Strategy):
def __init__(self, config: TestHistoricalAggConfig):
super().__init__(config=config)
# self.external_sma = SimpleMovingAverage(2)
# self.composite_sma = SimpleMovingAverage(2)
def on_start(self):
######### for testing bars
utc_now = self._clock.utc_now()
start_historical_bars = utc_now - pd.Timedelta(minutes=self.config.historical_start_delay)
end_historical_bars = utc_now - pd.Timedelta(minutes=self.config.historical_end_delay)
self.user_log(f"on_start: {start_historical_bars=}, {end_historical_bars=}")
# external_bar_type = BarType.from_str(f"{self.config.symbol_id}-1-MINUTE-LAST-EXTERNAL")
# self.subscribe_bars(external_bar_type)
bar_type_1 = BarType.from_str(
f"{self.config.symbol_id}-2-MINUTE-LAST-INTERNAL@1-MINUTE-EXTERNAL",
)
bar_type_2 = BarType.from_str(
f"{self.config.symbol_id}-4-MINUTE-LAST-INTERNAL@2-MINUTE-INTERNAL",
)
bar_type_3 = BarType.from_str(
f"{self.config.symbol_id}-5-MINUTE-LAST-INTERNAL@1-MINUTE-EXTERNAL",
)
self.request_aggregated_bars(
[bar_type_1, bar_type_2, bar_type_3],
start=start_historical_bars,
end=end_historical_bars,
update_subscriptions=True,
include_external_data=False,
)
self.user_log("request_aggregated_bars done")
self.subscribe_bars(bar_type_1)
self.subscribe_bars(bar_type_2)
self.subscribe_bars(bar_type_3)
self.user_log("subscribe_bars done")
#### for testing indicators with bars
# self.register_indicator_for_bars(external_bar_type, self.external_sma)
# self.register_indicator_for_bars(composite_bar_type, self.composite_sma)
######### for testing quotes
# utc_now = self._clock.utc_now()
# start_historical_bars = utc_now - pd.Timedelta(minutes=self.config.historical_start_delay)
# end_historical_bars = utc_now - pd.Timedelta(
# minutes=self.config.historical_end_delay,
# milliseconds=1,
# )
# self.user_log(f"on_start: {start_historical_bars=}, {end_historical_bars=}")
# bar_type_1 = BarType.from_str(f"{self.config.symbol_id}-1-MINUTE-BID-INTERNAL")
# bar_type_2 = BarType.from_str(f"{self.config.symbol_id}-2-MINUTE-BID-INTERNAL@1-MINUTE-INTERNAL")
# self.request_aggregated_bars(
# [bar_type_1, bar_type_2],
# start=start_historical_bars,
# end=end_historical_bars,
# update_subscriptions=True,
# include_external_data=False,
# )
# self.subscribe_bars(bar_type_1)
# self.subscribe_bars(bar_type_2)
######### for testing trades
# utc_now = self._clock.utc_now()
# start_historical_bars = utc_now - pd.Timedelta(minutes=self.config.historical_start_delay)
# end_historical_bars = utc_now - pd.Timedelta(
# minutes=self.config.historical_end_delay,
# milliseconds=1,
# )
# self.user_log(f"on_start: {start_historical_bars=}, {end_historical_bars=}")
# bar_type_1 = BarType.from_str(f"{self.config.symbol_id}-1-MINUTE-LAST-INTERNAL")
# bar_type_2 = BarType.from_str(f"{self.config.symbol_id}-2-MINUTE-LAST-INTERNAL@1-MINUTE-INTERNAL")
# self.request_aggregated_bars(
# [bar_type_1, bar_type_2],
# start=start_historical_bars,
# end=end_historical_bars,
# update_subscriptions=True,
# include_external_data=False,
# )
# self.subscribe_bars(bar_type_1)
# self.subscribe_bars(bar_type_2)
def on_historical_data(self, data):
if type(data) is Bar:
self.user_log(
f"historical bar ts_init = {unix_nanos_to_iso8601(data.ts_init)}, {data.ts_init}",
)
self.user_log(data)
# self.user_log(f"{self.external_sma.value=}, {self.external_sma.initialized=}")
# self.user_log(f"{self.composite_sma.value=}, {self.composite_sma.initialized=}")
def on_bar(self, bar):
self.user_log(f"bar ts_init = {unix_nanos_to_iso8601(bar.ts_init)}, {bar.ts_init}")
self.user_log(bar)
# self.user_log(f"{self.external_sma.value=}, {self.external_sma.initialized=}")
# self.user_log(f"{self.composite_sma.value=}, {self.composite_sma.initialized=}")
def user_log(self, msg):
self.log.warning(str(msg), color=LogColor.GREEN)
# %% [markdown]
# ## backtest node
# %%
# BacktestEngineConfig
tested_market_data = "bars" # or "quotes" or "trades"
historical_start_delay = 10 if tested_market_data == "bars" else 2
historical_end_delay = 1 if tested_market_data == "bars" else 0
backtest_start = "2024-07-01T23:55" if tested_market_data == "bars" else "2024-07-02T00:00"
backtest_end = "2024-07-02T00:10" if tested_market_data == "bars" else "2024-07-02T00:02"
strategies = [
ImportableStrategyConfig(
strategy_path=TestHistoricalAggStrategy.fully_qualified_name(),
config_path=TestHistoricalAggConfig.fully_qualified_name(),
config={
"symbol_id": InstrumentId.from_str(f"{future_symbols[0]}.GLBX"),
"historical_start_delay": historical_start_delay,
"historical_end_delay": historical_end_delay,
},
),
]
logging = LoggingConfig(
bypass_logging=False,
log_colors=True,
log_level="WARN",
log_level_file="WARN",
log_directory=".",
log_file_format=None, # "json" or None
log_file_name="databento_option_greeks",
clear_log_file=True,
)
catalogs = [
DataCatalogConfig(
path=catalog.path,
),
]
data_engine = DataEngineConfig(
time_bars_origins={
BarAggregation.MINUTE: pd.Timedelta(seconds=0),
},
)
engine_config = BacktestEngineConfig(
strategies=strategies,
logging=logging,
catalogs=catalogs,
data_engine=data_engine,
)
# BacktestRunConfig
data = [
BacktestDataConfig(
data_cls=Bar,
catalog_path=catalog.path,
instrument_id=InstrumentId.from_str(f"{future_symbols[0]}.GLBX"),
bar_spec="1-MINUTE-LAST",
start_time="2024-07-01T23:40",
end_time="2024-07-02T00:10",
),
BacktestDataConfig(
data_cls=QuoteTick,
catalog_path=catalog.path,
instrument_id=InstrumentId.from_str(f"{future_symbols[0]}.GLBX"),
start_time="2024-07-01T23:58",
end_time="2024-07-02T00:02",
),
BacktestDataConfig(
data_cls=TradeTick,
catalog_path=catalog.path,
instrument_id=InstrumentId.from_str(f"{future_symbols[0]}.GLBX"),
start_time="2024-07-01T23:58",
end_time="2024-07-02T00:02",
),
]
venues = [
BacktestVenueConfig(
name="GLBX",
oms_type="NETTING",
account_type="MARGIN",
base_currency="USD",
starting_balances=["1_000_000 USD"],
),
]
configs = [
BacktestRunConfig(
engine=engine_config,
data=data,
venues=venues,
chunk_size=None, # use None when loading custom data
start=backtest_start,
end=backtest_end,
),
]
node = BacktestNode(configs=configs)
# %%
results = node.run(raise_exception=True)