-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgather_data.py
125 lines (99 loc) · 3.64 KB
/
gather_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
import time
import csv
import os
import pandas
import matplotlib
import numpy as np
matplotlib.use("agg")
from matplotlib import pyplot as plt
import matplotlib.dates as mdates
from palettable.cartocolors.qualitative import Antique_2 as cmap
def get_data():
now = pandas.Timestamp.now()
begin = now - pandas.Timedelta("4.5 days")
files_to_read = [""]
time = pandas.Series()
concentration = pandas.Series()
temperature = pandas.Series()
for i in range(6):
dtime = begin + pandas.Timedelta("{} days".format(i))
fname = "{}-{}-{}.csv".format(dtime.year, dtime.month, dtime.day)
if not os.path.exists(fname):
continue
data = pandas.read_csv(fname)
time = time.append(data["Time"])
concentration = concentration.append(data["Concentration"])
temperature = temperature.append(data["Temperature"])
time = pandas.to_datetime(time, unit="s")
time = time.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
concentration = np.array(concentration)
temperature = np.array(temperature)
return time, concentration, temperature
def make_plot():
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax_c = ax2.twinx()
now = pandas.Timestamp.now(tz="US/Eastern")
today = pandas.Timestamp(
year=now.year, month=now.month, day=now.day, tz="US/Eastern"
)
# handle bug in old pandas version on rpi
try:
today = today.tz_localize("US/Eastern")
except TypeError:
pass
begin = now - pandas.Timedelta("4.5 days")
day = pandas.Timedelta("1 days")
time, concentration, temperature = get_data()
ticks = [today - i * day for i in range(4, -2, -1)]
minorticks = [today - day * (i + 0.5) for i in range(4, -2, -1)]
ax1.set_xlim(begin, now + 0.5 * day)
ax1.set_xlabel("Time")
ax1.set_xticks(ticks)
ax1.set_xticks(minorticks, minor=True)
ax1.xaxis.set_major_formatter(mdates.DateFormatter("%m-%d-%H"))
ax2.set_xlim(begin, now + 0.5 * day)
ax2.set_xlabel("Time")
ax2.set_xticks(ticks)
ax2.set_xticks(minorticks, minor=True)
ax2.xaxis.set_major_formatter(mdates.DateFormatter("%m-%d-%H"))
ax1.plot(time, concentration, color=cmap.mpl_colors[0])
ax1.set_ylim(0, 3000)
ax1.set_ylabel(r"$\rm{CO}_2$ Concentration (PPM)")
ax1.grid()
flimits = [70, 80]
climits = [21.11, 26.67]
ax2.plot(
time, 9 / 5 * temperature + 32, ".", markersize=0.4, color=cmap.mpl_colors[1]
)
ax2.set_ylim(flimits[0], flimits[1])
ax2.set_ylabel(r"Temperature ($\circ\rm{F}$)")
ax2.grid()
ax_c.set_ylim(climits[0], climits[1])
ax_c.set_ylabel(r"($\circ\rm{C}$)")
plt.tight_layout()
if not os.path.isdir("webapp/static"):
os.mkdir("webapp/static")
fig.savefig("webapp/static/co2.png", dpi=100)
plt.close()
if __name__ == "__main__":
import co2meter
while True:
tb = time.time()
mon = co2meter.CO2monitor()
now = pandas.Timestamp.now()
output_filename = "{}-{}-{}.csv".format(now.year, now.month, now.day)
if not os.path.exists(output_filename):
with open(output_filename, "w") as f:
f.write("Time,Concentration,Temperature\n")
data = mon.read_data()
t = time.mktime(data.index[0].timetuple())
row = t, np.float64(data["co2"]), np.float64(data["temp"])
print("{}, {} PPM, {} °C".format(*row))
with open(output_filename, "a") as f:
writer = csv.writer(f)
writer.writerow(row)
make_plot()
tsleep = 60 - (time.time() - tb)
if tsleep > 0:
time.sleep(tsleep)