forked from jasonfleming/pputils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadcirc2flt_bnd.py
executable file
·180 lines (151 loc) · 6.02 KB
/
adcirc2flt_bnd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python3
#
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
# #
# adcirc2flt_bnd.py #
# #
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
#
# Author: Pat Prodanovic, Ph.D., P.Eng.
#
# Date: Dec 1, 2016
#
# Purpose: Script takes in a tin in ADCIRC format, and generates an ESRI *.flt
# file for easy visualization by a GIS. This is the same as my adcirc2flt.py
# script, except that this one generates the grid for the region within the
# boundary polygon, instead for the entire triangulation. The boundary polygon
# should be inside the boundary of the triangulation. If this is not the case
# garbage results will be generated for the area outside the triangulation
# boundary but inside the boundary polygon.
#
# Uses: Python 2 or 3, Matplotlib, Numpy
#
# Example:
#
# python adcirc2flt_bnd.py -i tin.grd -b boundary.csv -s 10 -o tin.asc
# where:
# -i input adcirc mesh file
# -b boundary where the grid is to be generated
# -s spacing (in m) of the *.asc grid file
# -o generated *.asc grid file
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Global Imports
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import os,sys # system parameters
import matplotlib.tri as mtri # matplotlib triangulations
import matplotlib.path as mplPath # matplotlib path object
import numpy as np # numpy
from ppmodules.readMesh import * # to get all readMesh functions
import struct # to write binary data to file
from progressbar import ProgressBar, Bar, Percentage, ETA
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MAIN
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
curdir = os.getcwd()
#
# I/O
if len(sys.argv) != 9:
print('Wrong number of Arguments, stopping now...')
print('Usage:')
print('python adcirc2flt_bnd.py -i tin.grd -p poly.csv -s 10 -o tin.asc')
sys.exit()
adcirc_file = sys.argv[2]
boundary_file = sys.argv[4]
spacing = sys.argv[6]
spacing = float(spacing)
output_file = sys.argv[8] # output *.asc grid
# to create the output file
fout = open(output_file,'wb')
# the name of the header file (this is asci format)
# use reverse split!
header_file = output_file.rsplit('.',1)[0] + '.hdr'
fhdr = open(header_file,'w')
# read the adcirc file
print('Reading TIN ...')
n,e,x,y,z,ikle = readAdcirc(adcirc_file)
# read polygon file
print('Reading boundary ...')
poly_data = np.loadtxt(boundary_file, delimiter=',',skiprows=0,unpack=True)
# polygon data
shapeid_poly = poly_data[0,:]
x_poly = poly_data[1,:]
y_poly = poly_data[2,:]
# crop all the polygon points to three decimals only
x_poly = np.around(x_poly,decimals=3)
y_poly = np.around(y_poly,decimals=3)
# get the unique polygon ids
polygon_ids = np.unique(shapeid_poly)
# find out how many different polygons there are
n_polygons = len(polygon_ids)
if (n_polygons > 1):
print('Number of polygons in input file greater than 1. Exiting.')
sys.exit()
# construct a polygon as mpl object
poly = list()
for i in range(len(shapeid_poly)):
poly.append( (x_poly[i], y_poly[i]) )
# convert poly list to a numpy array
poly_array = np.asarray(poly)
# create a mathplotlib path object
path = mplPath.Path(poly_array)
# create tin triangulation object using matplotlib
print('Creating Matplotlib triangulation ...')
tin = mtri.Triangulation(x, y, ikle)
# determine the spacing of the regular grid
range_in_x = x_poly.max() - x_poly.min()
range_in_y = y_poly.max() - y_poly.min()
max_range = max(range_in_x, range_in_y)
# first index is integer divider, second is remainder
num_x_pts = divmod(range_in_x, spacing)
num_y_pts = divmod(range_in_y, spacing)
print("Size of output matrix is : " + str(int(num_x_pts[0])) + " x " + str(int(num_y_pts[0])))
print("Grid resolution is : " + str(spacing) + " m")
# creates the regular grid
print('Creating the grid ...')
xreg, yreg = np.meshgrid(np.linspace(x_poly.min(), x_poly.max(), int(num_x_pts[0])),
np.linspace(y_poly.min(), y_poly.max(), int(num_y_pts[0])))
x_regs = xreg[1,:]
y_regs = yreg[:,1]
# perform the triangulation
print('Performing interpolations ...')
interpolator = mtri.LinearTriInterpolator(tin, z)
interp_zz = interpolator(xreg, yreg)
where_are_NaNs = np.isnan(interp_zz)
interp_zz[where_are_NaNs] = -999.0
# ravel interp_zz (i.e., create a 1d array out of the interpolated z)
interp_zz_ravel = np.ravel(interp_zz)
# to assign -999.0 to all mesh nodes outside of the poly boundary
# to make the gridded 2d points arrays into 1d arrays (i.e., unravel the
# 2d points into 1d grids
x_grid_pts = np.ravel(xreg)
y_grid_pts = np.ravel(yreg)
# loop through each point of the raveled arrays, and assign a NaN to
# one that lies outside of the boundary; this is the longest execution task
# of this script!
print('Clipping results to boundary ...')
w = [Percentage(), Bar(), ETA()]
pbar = ProgressBar(widgets=w, maxval=len(x_grid_pts)).start()
for i in range(len(x_grid_pts)):
poly_test = path.contains_point( (x_grid_pts[i], y_grid_pts[i]) )
if (poly_test == False):
interp_zz_ravel[i] = -999.00
pbar.update(i+1)
pbar.finish()
# now, turn interp_zz_ravel back into a 2d array
interp_zz = np.reshape(interp_zz_ravel, xreg.shape)
# open the output *.hdr file, and write the header info
fhdr.write("NCOLS " + str(interp_zz.shape[1]) + "\n")
fhdr.write("NROWS " + str(interp_zz.shape[0]) + "\n")
fhdr.write("XLLCORNER " + str(x_regs[0]) + "\n")
fhdr.write("YLLCORNER " + str(y_regs[0]) + "\n")
fhdr.write("CELLSIZE " + str(spacing) + "\n")
fhdr.write("NODATA_VALUE " + str(-999.00) + "\n")
fhdr.write("BYTEORDER LSBFIRST " + "\n")
print('Writing binary data file ...')
for i in range(interp_zz.shape[0]):
s = struct.pack('f'*interp_zz.shape[1], *np.flipud(interp_zz)[i,:])
fout.write(s)
fout.close()
print("All done!")