forked from jasonfleming/pputils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkwavelibts.py
executable file
·183 lines (159 loc) · 6.29 KB
/
mkwavelibts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
#
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
# #
# mkwavelibts.py #
# #
#+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!+!
#
# Author: Pat Prodanovic, Ph.D., P.Eng.
#
# Date: Jun 17, 2016
#
# Purpose: This script takes the master wave library file, offshore time
# series *.csv file and the library dictionary file (that says what each
# record in the master wave library file is), and it creates a *.slf
# result file for each time step of the time series data. Essentially, the
# script finds the record in the master wave library file that most closely
# corresponds to the time series data, and creates a *.slf file for each
# time step in the offshore time series. The resulting *.slf file is then
# to be used by prosou.f and condim_sisyphe.f subroutines to feed a
# Telemac2D/Sisyphe coupled model with wave library data.
#
# Uses: Python 2 or 3, Numpy
#
# Example:
#
# python mkwavelibts.py -i master_wave_lib.slf -t offshore_time_seris.csv
# -k library_dictionary_file.csv -o wave_lib_ts.slf
# where:
# -i is the master wave library file (each record is a scenario)
#
# -t is the time series *.csv (comma delimited, first record as header)
# with the following headings: yyyy,mm,dd,hh,minute,t2d_time,wl,hm0,tp,wdir
#
# -k is the wave library dictionary file (*.csv, comma delimited), with
# the following headings: id,water_level,wave_dir,wave_height,wave_period
# this file is a metadata for master the wave library file (i.e., it
# tells us which condition each record corresponds to
#
# -o is the output *.slf file created from the master library file
# corresponding to each time step in the time series file.
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Global Imports
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import os,sys
import random
import numpy as np
from ppmodules.selafin_io_pp import *
from progressbar import ProgressBar, Bar, Percentage, ETA
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MAIN
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# I/O
if len(sys.argv) == 9:
master_lib_file = sys.argv[2]
offshore_ts_file = sys.argv[4]
lib_dict_file = sys.argv[6]
output_file = sys.argv[8]
else:
print('Wrong number of arguments ... stopping now ...')
print('Usage:')
print('python mkwavelibts.py -i wave_lib.slf -t offshore_ts.csv')
print(' -k lib_dict.csv -o wave_lib_ts.slf')
sys.exit()
# read the *.csv data first
offshore_ts_data = np.loadtxt(offshore_ts_file, delimiter=',', skiprows=1, unpack=True)
# yyyy,mm,dd,hh,minute,t2d_time,wl,hm0,tp,wdir
yyyy = offshore_ts_data[0,:].astype(int)
mm = offshore_ts_data[1,:].astype(int)
dd = offshore_ts_data[2,:].astype(int)
hh = offshore_ts_data[3,:].astype(int)
minute = offshore_ts_data[4,:].astype(int)
t2d_time = offshore_ts_data[5,:].astype(int)
wl = offshore_ts_data[6,:]
hm0 = offshore_ts_data[7,:]
tp = offshore_ts_data[8,:]
wdir = offshore_ts_data[9,:]
# reads the dictionary keys file
lib_dict_data = np.loadtxt(lib_dict_file, delimiter=',', skiprows=1, unpack=True)
# id,water_level,wave_dir,wave_height,wave_period
lib_id = lib_dict_data[0,:].astype(int)
lib_wl = lib_dict_data[1,:]
lib_wdir = lib_dict_data[2,:]
lib_hm0 = lib_dict_data[3,:]
lib_tp = lib_dict_data[4,:]
# reads the input wave lib file
lib = ppSELAFIN(master_lib_file)
lib.readHeader()
lib.readTimes()
# gets some of the mesh properties from the *.slf file
times = lib.getTimes()
vnames = lib.getVarNames()
vunits = lib.getVarUnits()
float_type,float_size = lib.getPrecision()
NELEM, NPOIN, NDP, IKLE, IPOBO, x, y = lib.getMesh()
# number of variables
numvars = len(vnames)
# results array that holds all outputs for a particular time step
#lib_results = np.zeros((numvars, NPOIN))
# writes the output *.slf file for the offshore time series
res = ppSELAFIN(output_file)
res.setPrecision(float_type,float_size)
res.setTitle('created with pputils')
res.setVarNames(vnames)
res.setVarUnits(vunits)
res.setIPARAM([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])
res.setMesh(NELEM, NPOIN, NDP, IKLE, IPOBO, x, y)
res.writeHeader()
# now we have to use the data from the *.csv files to extract from the
# master wave library file a record that corresponds to each time step in
# the offshore time series file
# number of time steps in the offshore data
num_ts_points = len(yyyy)
# distance array
dist = np.zeros(num_ts_points)
# record to extract for a particular time step
rec = 0
# output file that tells us which lib case was selected for each time
# step in the final output
fout = open('wave_lib_temp_output.csv','w')
header_str = 'yyyy,mm,dd,hh,minute,t2d_time,wl,hm0,tp,wdir,'
header_str = header_str + 'lib_id,lib_wl,lib_hm0,lib_tp,lib_wdir'
fout.write(header_str + '\n')
# widget for the progress bar
w = [Percentage(), Bar(), ETA()]
pbar = ProgressBar(widgets=w, maxval=num_ts_points).start()
for i in range(num_ts_points):
if ( (wl[i] < -900) or (hm0[i] < -900) or (tp[i] < -999) or (wdir[i] < 0) ):
print('Time series input data is invalid. Exiting.')
sys.exit()
else:
# compute a straight out euclidian distance
dist = np.sqrt( (lib_wl - wl[i])**2 +
(lib_wdir - wdir[i])**2 + (lib_hm0 - hm0[i])**2 +
(lib_tp - tp[i])**2 )
# this is the record in the master library file that correspons
# to the time step i
# rec is the index of the minimum dist
rec = np.argmin(dist)
# write temporary output to a text file
fout.write(str(yyyy[i]) + ',' + str(mm[i]) + ',' + str(dd[i]) + ',' +
str(hh[i]) + ',' + str(minute[i]) + ',' + str(t2d_time[i]) + ',' +
str(wl[i]) + ',' + str(hm0[i]) + ',' + str(tp[i]) + ',' +
str(wdir[i]) + ',' + str(lib_id[rec]) + ',' + str(lib_wl[rec]) + ',' +
str(lib_hm0[rec]) + ',' +str(lib_tp[rec]) + ',' + str(lib_wdir[rec]) + '\n')
# reads rec from the wave library file
lib.readVariables(rec)
lib_res = lib.getVarValues()
#print('writing time ' + str(i+1) + ' out of ' + str(num_ts_points))
# writes the above record to the output *.slf file
res.writeVariables(t2d_time[i],lib_res)
pbar.update(i+1)
# close the *.slf files
lib.close()
res.close()
pbar.finish()