-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrammar.go
856 lines (769 loc) · 21.4 KB
/
grammar.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
package goabnf
import (
"fmt"
"strconv"
"strings"
)
// Grammar represents an ABNF grammar as defined by RFC 5234.
// It is constituted of a set of rules with an unique name.
type Grammar struct {
Rulemap map[string]*Rule
}
// IsValid checks there exist at least a path that completly consumes
// input, hence is valide given this gramma and especially one of its
// rule.
func (g *Grammar) IsValid(rulename string, input []byte) (bool, error) {
lt, err := g.IsLeftTerminating(rulename)
if err != nil {
return false, err
}
if !lt {
return false, fmt.Errorf("rule %s is not left terminating thus can't be validated without the risk of infinite recursion", rulename)
}
paths, err := Parse(input, g, rulename)
return len(paths) != 0 && err == nil, nil
}
// String returns the representation of the grammar that is valid
// according to the ABNF specifications/RFCs.
// This notably imply the use of CRLF instead of LF, and does not
// preserve the initial order nor pretty print it.
func (g *Grammar) String() string {
str := ""
for _, rule := range g.Rulemap {
str += rule.String() + "\r\n"
}
return str
}
// PrettyPrint returns a prettified string that represents the grammar.
func (g *Grammar) PrettyPrint() string {
// Determine maximum rulename length
rulenameLength := 0
for rulename := range g.Rulemap {
if len(rulename) > rulenameLength {
rulenameLength = len(rulename)
}
}
// Construct output
out := ""
for rulename, rl := range g.Rulemap {
spaces := ""
for i := 0; i < rulenameLength-len(rulename); i++ {
spaces += " "
}
out += fmt.Sprintf("%s%s = %s\r\n", rulename, spaces, rl.Alternation)
}
return out
}
// Path represents a portion of an input that matched a rule from
// an index to another, with a composite structure.
//
// Notice it does not matches specifically ABNF grammar, but any
// compatible grammar. The most common case is parsing an input with
// the ABNF grammar as source, which is then lexed to fall back into
// a ready-to-go ABNF grammar of this input.
// There may exist specific cases where you want to use another grammar
// as source (e.g. EBNF grammar provided by parsing EBNF specification
// input written in ABNF with the ABNF grammar as source, which as
// itself been implemented from the ABNF specification of ABNF in the
// ABNF structure).
// For those cases, you can use this implementation as it uses a
// generic behavior, by parsing your source ABNF grammar first then
// use it to validate inputs.
type Path struct {
// Subpaths aka children. Ordering applies
Subpaths []*Path
// MatchRule in source's grammar ruleset
MatchRule string
// Start ≤ End
Start, End int
}
// ParseABNF is a helper facilitating the call to Parse using the
// pre-computed ABNF grammar and lex the resulting to produce a
// ready-to-use grammar.
func ParseABNF(input []byte, opts ...ParseABNFOption) (*Grammar, error) {
// Process functional options
o := &parseABNFOptions{
validate: defaultValidate,
}
for _, opt := range opts {
opt.applyParseABNF(o)
}
// Parse input with ABNF grammar
// Don't need to transmit deepness option, as we can be sure ABNF won't
// recurse indefinitely.
paths, err := Parse(input, ABNF, "rulelist")
if err != nil {
return nil, err
}
path := (*Path)(nil)
switch len(paths) {
case 0:
return nil, ErrNoSolutionFound
case 1:
path = paths[0]
default:
return nil, &ErrMultipleSolutionsFound{
Paths: paths,
}
}
// Lex path
g, err := LexABNF(input, path)
if err != nil {
return nil, err
}
// Validate semantics
if o.validate {
if err := SemvalABNF(g); err != nil {
return nil, err
}
}
return g, nil
}
// Parse parses an ABNF-compliant input using a grammar.
// It uses uses a top-down parsing strategy using backtracking in
// order to look for solutions. If many are found, it raises an error.
// If the input is invalid (gramatically, incomplete...) it returns
// an error of type *ErrParse.
func Parse(input []byte, grammar *Grammar, rootRulename string) ([]*Path, error) {
// Select root rule to begin with
rootRule := GetRule(rootRulename, grammar.Rulemap)
if rootRule == nil {
return nil, &ErrRuleNotFound{
Rulename: rootRulename,
}
}
// Parse input with grammar's initial rule
possibilites := solveAlt(grammar, rootRule.Alternation, input, 0)
// Look for solutions that consumed the whole input
outPoss := []*Path{}
for _, poss := range possibilites {
if poss.End == len(input) {
poss.MatchRule = rootRulename
outPoss = append(outPoss, poss)
}
}
return outPoss, nil
}
func solveAlt(grammar *Grammar, alt Alternation, input []byte, index int) []*Path {
altPossibilities := []*Path{}
for _, concat := range alt.Concatenations {
cntPossibilities := []*Path{}
// Init with first repetition (guarantee of at least 1 repetition)
possibilities := solveRep(grammar, concat.Repetitions[0], input, index)
for _, poss := range possibilities {
cntPossibilities = append(cntPossibilities, &Path{
Subpaths: []*Path{poss},
MatchRule: "",
Start: index,
End: poss.End,
})
}
// Keep going and multiply previous paths with current repetition
// resulting paths
for i := 1; i < len(concat.Repetitions); i++ {
rep := concat.Repetitions[i]
tmpPossibilities := []*Path{}
for _, cntPoss := range cntPossibilities {
possibilities := solveRep(grammar, rep, input, cntPoss.End)
for _, poss := range possibilities {
// If the possibility is the empty path, don't append the empty one
if poss.Start == poss.End {
tmpPossibilities = append(tmpPossibilities, cntPoss)
continue
}
// Remove empty traversal previous subpath if necessary
subs := make([]*Path, len(cntPoss.Subpaths))
copy(subs, cntPoss.Subpaths)
lastSub := subs[len(subs)-1]
if lastSub.Start == lastSub.End {
subs = subs[:len(subs)-1]
}
tmpPossibilities = append(tmpPossibilities, &Path{
Subpaths: append(subs, poss),
MatchRule: "",
Start: index,
End: poss.End,
})
}
}
cntPossibilities = tmpPossibilities
}
altPossibilities = append(altPossibilities, cntPossibilities...)
}
return altPossibilities
}
func solveRep(grammar *Grammar, rep Repetition, input []byte, index int) []*Path {
// Initiate repetition solve
if !solveKeepGoing(rep, input, index, 0) {
return []*Path{}
}
ppaths := [][]*Path{}
ppaths = append(ppaths, solveElem(grammar, rep.Element, input, index))
// Other repetition solves
for i := 1; i != rep.Max; i++ {
ppaths = append(ppaths, []*Path{})
for _, prevPath := range ppaths[i-1] {
// For all possibilities, duplicate the subpaths to avoid pointer updates
if !solveKeepGoing(rep, input, prevPath.End, i) {
continue
}
elemPossibilities := solveElem(grammar, rep.Element, input, prevPath.End)
for _, elemPoss := range elemPossibilities {
subs := make([]*Path, len(prevPath.Subpaths), len(prevPath.Subpaths)+1)
copy(subs, prevPath.Subpaths)
subs = append(subs, elemPoss)
ppaths[i] = append(ppaths[i], &Path{
Subpaths: subs,
MatchRule: "",
Start: prevPath.Start,
End: elemPoss.End,
})
}
}
// If no new path found during this repetition, don't keep working
if len(ppaths[i]) == 0 {
break
}
}
// Return only the appropriate results.
outpaths := []*Path{}
for i := max(1, rep.Min); i <= len(ppaths); i++ {
outpaths = append(outpaths, ppaths[i-1]...)
}
// If the empty solution if possible, keep track of it
if rep.Min == 0 {
outpaths = append(outpaths, &Path{
Subpaths: []*Path{
{
Subpaths: nil,
MatchRule: "",
Start: index,
End: index,
},
},
MatchRule: "", // This will be modified by upper function
Start: index,
End: index,
})
}
return outpaths
}
func solveElem(grammar *Grammar, elem ElemItf, input []byte, index int) []*Path {
paths := []*Path{}
switch v := elem.(type) {
case ElemRulename:
rule := GetRule(v.Name, grammar.Rulemap)
possibilities := solveAlt(grammar, rule.Alternation, input, index)
for _, poss := range possibilities {
poss.MatchRule = v.Name
paths = append(paths, poss)
}
case ElemOption:
paths = solveRep(grammar, Repetition{
Min: 0,
Max: 1,
Element: ElemGroup(v),
}, input, index)
case ElemGroup:
paths = solveAlt(grammar, v.Alternation, input, index)
case ElemNumVal:
switch v.Status {
case StatRange:
// Any matches
min, max := atob(v.Elems[0], v.Base), atob(v.Elems[1], v.Base)
if min <= input[index] && input[index] <= max {
paths = append(paths, &Path{
Subpaths: nil,
MatchRule: "",
Start: index,
End: index + 1,
})
}
case StatSeries:
// Only match if all matches in order
initialIndex := index
matches := true
for i := 0; i < len(v.Elems) && matches; i++ {
if atob(v.Elems[i], v.Base) != input[index] {
matches = false
}
index++
}
if matches {
paths = append(paths, &Path{
Subpaths: nil,
MatchRule: "",
Start: initialIndex,
End: index,
})
}
}
case ElemProseVal:
// Prose-val does not produce any path, is a prose description
case ElemCharVal:
initialIndex := index
matches := true
for i := 0; i < len(v.Values) && matches; i++ {
if sensequal(v.Values[i], input[index], v.Sensitive) {
index++
} else {
matches = false
}
}
if matches {
paths = append(paths, &Path{
Subpaths: nil,
MatchRule: "",
Start: initialIndex,
End: index,
})
}
}
return paths
}
func sensequal(target, actual byte, sensitive bool) bool {
if !sensitive {
target, actual = strmin(target), strmin(actual)
}
return target == actual
}
func strmin(r byte) byte {
if r >= 'A' && r <= 'Z' {
return r - 'A' + 'a'
}
return r
}
// solveKeepGoing returns true if a new repetition should be tested or not.
// If the repetition has no max, it returns whether input has been
// totally consumed.
// Else, it checks if input has been totally consumed AND if there
// could be other repetitions.
func solveKeepGoing(rep Repetition, input []byte, index, i int) bool {
// Find if could handle the length of this repetition
// considering its type
couldHandle := true
switch v := rep.Element.(type) {
case ElemNumVal:
// Check only one byte
couldHandle = index < len(input)
case ElemCharVal:
// Check current index+length of char value string is not longer than the input
couldHandle = index+len(v.Values) <= len(input)
case ElemProseVal:
// Don't need to go further as it can't be parsed
couldHandle = false
}
// If no maximum repetition, only bound to input length thus
// if it could handle its consumption given repetition's type
if rep.Max == inf {
return couldHandle
}
// If has a maximum repetition, check could handle AND will remain
// under boundary.
return couldHandle && i < rep.Max
}
// LexABNF is the lexer for the ABNF structural model implemented.
func LexABNF(input []byte, path *Path) (*Grammar, error) {
gr, err := lexABNF(input, path)
if err != nil {
return nil, err
}
return gr.(*Grammar), nil
}
func lexABNF(input []byte, path *Path) (any, error) {
switch path.MatchRule {
case abnfRulelist.Name:
mp := map[string]*Rule{}
path := path.Subpaths[0]
sub := path.Subpaths[0]
for i := 0; i < len(path.Subpaths); i++ {
// Only work on rules (i.e. skip empty lines)
if sub.MatchRule == "rule" {
// Lex it to actual ABNF rule object
rltmp, err := lexABNF(input, sub)
if err != nil {
return nil, err
}
rl := rltmp.(Rule)
// Determine the "defined-as" characters -> new rule ("=") or alternation ("=/")
defAs := sub.Subpaths[1]
switch len(defAs.Subpaths) {
case 1:
defAs = defAs.Subpaths[0]
case 2:
if defAs.Subpaths[0].Subpaths[0].Subpaths == nil {
defAs = defAs.Subpaths[0]
} else {
defAs = defAs.Subpaths[1]
}
default: // case 3
defAs = defAs.Subpaths[1]
}
definedAs := strings.TrimSpace(string(input[defAs.Start:defAs.End]))
switch definedAs {
case "=":
if rule := GetRule(rl.Name, mp); rule != nil {
return nil, &ErrDuplicatedRule{
Rulename: rl.Name,
}
}
mp[rl.Name] = &rl
case "=/":
// Block core rules from being used
rule := GetRule(rl.Name, nil)
if rule != nil {
return nil, &ErrCoreRuleModify{
CoreRulename: rl.Name,
}
}
// Get it from rulemap and ensure it already exist
rule = GetRule(rl.Name, mp)
if rule == nil {
return nil, &ErrRuleNotFound{
Rulename: rl.Name,
}
}
rule.Alternation.Concatenations = append(rule.Alternation.Concatenations, rl.Alternation.Concatenations...)
mp[rule.Name] = rule
}
}
if i+1 < len(path.Subpaths) {
sub = path.Subpaths[i+1].Subpaths[0]
}
}
return &Grammar{
Rulemap: mp,
}, nil
case abnfRule.Name:
rulename := string(input[path.Subpaths[0].Start:path.Subpaths[0].End])
pth := path.Subpaths[2].Subpaths[0] // -> rule -> elements -> alternation
alttmp, err := lexABNF(input, pth)
if err != nil {
return nil, err
}
return Rule{
Name: rulename,
Alternation: alttmp.(Alternation),
}, nil
case abnfRulename.Name:
return ElemRulename{
Name: string(input[path.Start:path.End]),
}, nil
case abnfAlternation.Name:
// Extract first concatenation, must exist
concatenations := make([]Concatenation, 0, 1)
cnttmp, err := lexABNF(input, path.Subpaths[0])
if err != nil {
return nil, err
}
concatenations = append(concatenations, cnttmp.(Concatenation))
// If none next, don't start following extraction
if len(path.Subpaths) == 1 {
return Alternation{
Concatenations: concatenations,
}, nil
}
// Determine first concatenation hit index
subs := path.Subpaths[1].Subpaths
icnt := 1
for {
if strings.EqualFold(subs[icnt].MatchRule, abnfConcatenation.Name) {
break
}
icnt++
}
cnttmp, err = lexABNF(input, subs[icnt])
if err != nil {
return nil, err
}
concatenations = append(concatenations, cnttmp.(Concatenation))
// Following are hits too, last of each subpaths is another concatenation
for _, sub := range subs[icnt+1:] {
cnttmp, err := lexABNF(input, sub.Subpaths[len(sub.Subpaths)-1])
if err != nil {
return nil, err
}
concatenations = append(concatenations, cnttmp.(Concatenation))
}
return Alternation{
Concatenations: concatenations,
}, nil
case abnfGroup.Name:
alt := (*Path)(nil)
for _, sub := range path.Subpaths {
if strings.EqualFold(sub.MatchRule, abnfAlternation.Name) {
alt = sub
break
}
}
alttmp, err := lexABNF(input, alt)
if err != nil {
return nil, err
}
return ElemGroup{
Alternation: alttmp.(Alternation),
}, nil
case abnfConcatenation.Name:
// Extract first repetition, must exist
repetitions := make([]Repetition, 0, 1)
reptmp, err := lexABNF(input, path.Subpaths[0])
if err != nil {
return nil, err
}
repetitions = append(repetitions, reptmp.(Repetition))
// If none next, don't start following extraction
if len(path.Subpaths) == 1 {
return Concatenation{
Repetitions: repetitions,
}, nil
}
// Determine first concatenation hit index
subs := path.Subpaths[1].Subpaths
irep := 1
for {
if strings.EqualFold(subs[irep].MatchRule, abnfRepetition.Name) {
break
}
irep++
}
reptmp, err = lexABNF(input, subs[irep])
if err != nil {
return nil, err
}
repetitions = append(repetitions, reptmp.(Repetition))
// Following are hits too, last of each subpaths is another concatenation
for _, sub := range subs[irep+1:] {
reptmp, err := lexABNF(input, sub.Subpaths[len(sub.Subpaths)-1])
if err != nil {
return nil, err
}
repetitions = append(repetitions, reptmp.(Repetition))
}
return Concatenation{
Repetitions: repetitions,
}, nil
case abnfRepetition.Name:
min, max := 1, 1 // default to 1
var element *Path
switch len(path.Subpaths) {
case 1:
element = path.Subpaths[0]
case 2:
repeat := path.Subpaths[0].Subpaths[0].Subpaths[0] // -> option (hit) -> repeat -> hit
element = path.Subpaths[1]
// Look for "*" to determine behavior
spi := (*int)(nil)
for i := repeat.Start; i < repeat.End; i++ {
if input[i] == '*' {
spi = &i
break
}
}
if spi == nil {
// If not found, should be exact repetition match
dstr := string(input[repeat.Start:repeat.End])
d, err := strconv.Atoi(dstr)
if err != nil {
return nil, err
}
min, max = d, d
} else {
// Set min
dstr := string(input[repeat.Start:*spi])
if dstr == "" {
min = 0
} else {
d, err := strconv.Atoi(dstr)
if err != nil {
return nil, err
}
min = d
}
// Set max
dstr = string(input[*spi+1 : repeat.End])
if dstr == "" {
max = inf
} else {
d, err := strconv.Atoi(dstr)
if err != nil {
return nil, err
}
max = d
}
}
}
elemtmp, err := lexABNF(input, element.Subpaths[0])
if err != nil {
return nil, err
}
return Repetition{
Min: min,
Max: max,
Element: elemtmp.(ElemItf),
}, nil
case abnfOption.Name:
ialt := 1
for {
if strings.EqualFold(path.Subpaths[ialt].MatchRule, abnfAlternation.Name) {
break
}
ialt++
}
alttmp, err := lexABNF(input, path.Subpaths[ialt])
if err != nil {
return nil, err
}
return ElemOption{
Alternation: alttmp.(Alternation),
}, nil
case abnfCharVal.Name:
sensitive := false // by default insensitive (cf. RFC 7405)
if strings.EqualFold(path.Subpaths[0].MatchRule, abnfCaseSensitiveString.Name) {
sensitive = true
}
value := []byte{}
for _, sub := range path.Subpaths[0].Subpaths {
if strings.EqualFold(sub.MatchRule, abnfQuotedString.Name) {
value = input[sub.Subpaths[1].Start:sub.Subpaths[1].End]
break
}
}
return ElemCharVal{
Sensitive: sensitive,
Values: value,
}, nil
case abnfProseVal.Name:
values := []string{}
for i := path.Start + 1; i < path.End-1; i++ {
values = append(values, string(input[i]))
}
return ElemProseVal{
values: values,
}, nil
case abnfNumVal.Name:
basePath := path.Subpaths[1].Subpaths[0]
stat := StatSeries
elems := []string{
// First hit always at the same spot
string(input[basePath.Subpaths[1].Start:basePath.Subpaths[1].End]),
}
var base string
switch basePath.MatchRule {
case abnfBinVal.Name:
base = "b"
case abnfDecVal.Name:
base = "d"
case abnfHexVal.Name:
base = "x"
}
// Find if series or range
switch len(basePath.Subpaths) {
case 3:
}
if len(basePath.Subpaths) > 2 {
hit := basePath.Subpaths[2].Subpaths[0]
// Could be either serie or range
splc := input[hit.Subpaths[0].Start:hit.Subpaths[0].End]
if splc[0] == '-' {
stat = StatRange
}
// Second hit always at the same spot
elems = append(elems, string(input[hit.Subpaths[1].Start:hit.Subpaths[1].End]))
// Other follows in their own subpaths
for i := 2; i < len(hit.Subpaths); i++ {
t := hit.Subpaths[i]
elems = append(elems, string(input[t.Subpaths[1].Start:t.Subpaths[1].End]))
}
}
return ElemNumVal{
Base: base,
Status: stat,
Elems: elems,
}, nil
}
if len(path.Subpaths) == 1 {
return lexABNF(input, path.Subpaths[0])
}
panic(fmt.Sprintf("unhandlable path from %d to %d: \"%s\" ; sneek peak around \"%s\"", path.Start, path.End, input[path.Start:path.End], input[max(path.Start-10, 0):min(path.End+10, 0)]))
}
// SemvalABNF proceed to semantic validations of an ABNF grammar.
// It currently support the following checks:
// - for all rules, its dependencies (rules) exist
// - for repetition, min <= max
// - for num-val, that the value fits in 7-bits (US-ASCII encoded)
// To update this list, please open an issue.
func SemvalABNF(g *Grammar) error {
// Check all dependencies exist
for _, rule := range g.Rulemap {
deps := getDependencies(rule.Alternation)
for _, dep := range deps {
r := GetRule(dep, g.Rulemap)
if r == nil {
return &ErrDependencyNotFound{
Rulename: dep,
}
}
}
}
for _, rule := range g.Rulemap {
if err := semvalAlternation(rule.Alternation); err != nil {
return err
}
}
return nil
}
func semvalAlternation(alt Alternation) error {
for _, concat := range alt.Concatenations {
for _, rep := range concat.Repetitions {
// min <= max
if rep.Max != inf && rep.Min > rep.Max {
return &ErrSemanticRepetition{
Repetition: rep,
}
}
switch elem := rep.Element.(type) {
// num-val base
case ElemNumVal:
for _, val := range elem.Elems {
val = strings.TrimLeft(val, "0")
switch elem.Base {
case "B", "b":
// 8 bits to fill a byte, reject more
if len(val) > 8 {
return &ErrTooLargeNumeral{
Base: elem.Base,
Value: val,
}
}
case "D", "d":
// 3 = ceil(log(base, 2^8)), base=10, maximal value of 255 (included)
if len(val) > 3 || (len(val) == 3 && (val[0] > '2' || (val[0] == '2' && (val[1] > '5' || (val[1] == '5' && val[2] > '5'))))) {
return &ErrTooLargeNumeral{
Base: elem.Base,
Value: val,
}
}
case "X", "x":
// 2 hex to fill a byte, reject more
if len(val) > 2 {
return &ErrTooLargeNumeral{
Base: elem.Base,
Value: val,
}
}
}
}
// propagate recursion
case ElemGroup:
if err := semvalAlternation(elem.Alternation); err != nil {
return err
}
case ElemOption:
if err := semvalAlternation(elem.Alternation); err != nil {
return err
}
}
}
}
return nil
}