-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeat.py
101 lines (88 loc) · 2.55 KB
/
feat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import cv2
import numpy as np
import glob
import os
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.externals import joblib
from sklearn.svm import LinearSVC
from scipy.cluster.vq import *
from sklearn import svm, datasets
from sklearn import neighbors
from matplotlib.colors import ListedColormap
from sklearn.neighbors.nearest_centroid import NearestCentroid
from sklearn.cross_validation import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import linear_model
#set parameters
sift = cv2.xfeatures2d.SIFT_create()
trainpath = "/this/is/your/path/to/train/"
test = glob.glob('/this/is/your/path/to/test/*.png')
classeslist = os.listdir(trainpath)
desvector=[]
deslist=[]
classpaths = []
classlabels =[]
imageclasses=[]
classid=0
#label images
for train in classeslist:
dir = os.path.join(trainpath,train)
print dir
classpath = os.listdir(dir)
classpaths.append(dir)
classlabel = train
imageclasses+=[classlabel]*len(classpath)
classlabels.append(classid)
classid+=1
#Those printing statements are for debugging purpuses, in case you need to.
#print "imageclasses"
#print imageclasses
#print "classlabels"
#print classlabels
#print "classpaths"
#print classpaths
deslist1=np.zeros(shape =(128,1))
#print "deslist1 shape"
#print deslist1.shape
#print "y shape"
#print np.array([classlabels,1]).shape
imc = imageclasses
#print imageclasses[2400]
imageclasses = np.asarray(imageclasses)
classis=0
#get descriptor vector of each image and append
for j in classpaths:
p = glob.glob(j+"/*.png")
print "now evaluating" + j
counter=0
for i in p:
print i
classis+=1
counter+=1
img = cv2.imread(i)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
kp, des = sift.detectAndCompute(gray,None)
desvector.append((i,des))
deslist.append((des))
des = np.transpose(des)
#in case you want to look at individual sample's histogram
print classis
if counter%200 == 0:
cv2.drawKeypoints(gray,kp,img)
cv2.imwrite(str(classis)+".jpg",img)
#plt.hist(des,bins=xrange(8))
#plt.title(imageclasses[classis])
#plt.savefig("/home/periperi/school/rcv/project4/results/"+imageclasses[classis]+str(counter)+".png")
#plt.close()
print i
print i
print des.shape
deslist1 = np.concatenate((deslist1,des),axis=1)
print len(desvector)
print len(deslist)
deslist = np.array(deslist)
deslist1=np.transpose(deslist1)
#write a data file with the necessary data
joblib.dump((deslist1,imageclasses,deslist,classpaths,classeslist),"feat.pkl",compress=3)