forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatabaseSearch.qs
594 lines (511 loc) · 23.9 KB
/
DatabaseSearch.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.DatabaseSearch {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Extensions.Convert;
open Microsoft.Quantum.Extensions.Math;
open Microsoft.Quantum.Canon;
//////////////////////////////////////////////////////////////////////////
// Introduction //////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// This sample will walk through several examples of searching a database
// of N elements for a particular marked item using just O(1/√N) queries
// to the database. In particular, we will follow Grover's algorithm, as
// described in the standard library guide.
// We will model the database by an oracle D that acts to map indices
// to a flag indicating whether a given index is marked. In particular,
// let |z〉 be a single-qubit computational basis state (that is, either
// |0〉 or |1〉, and let |k〉 be a state representing an index k ∈ {0, 1,
// …, N }. Then
//
// D |z〉 |k〉 = |z ⊕ xₖ〉 |k〉,
//
// where x = x₀ x₁ … x_{N - 1} is a binary string such that xₖ is 1
// if and only if the kth item is marked, and where ⊕ is the classical
// exclusive OR gate. Note that given this definition, we know how D
// transforms arbitrary states by linearity -- given an input state
// that is a linear combination of orthogonal states |z〉|k〉 summed over the
// z and k indices, D acts on each state independently.
// First, we work out an example of how to construct and apply D without
// using the canon. We then implement all the steps of Grover search
// manually using this databse oracle. Second, we show the amplitude
// amplication libraries provided with the canon can make this task
// significantly easier.
//////////////////////////////////////////////////////////////////////////
// Database Search with Manual Oracle Definitions ////////////////////////
//////////////////////////////////////////////////////////////////////////
// For the first example, we start by hard coding an oracle D
// that always marks only the item k = N - 1 for N = 2^n and for
// n a positive integer. Note that n is the number of qubits needed to
// encode the database element index k.
/// # Summary
/// Given a qubit to use to store a mark bit and a register corresponding
/// to a database, marks the first qubit conditioned on the register
/// state being the all-ones state |11…1〉.
///
/// # Input
/// ## markedQubit
/// A qubit to be targeted by an `X` operation controlled on whether
/// the state of `databaseRegister` corresponds to a market item.
/// ## databaseRegister
/// A register representing the target of a query to the database.
///
/// # Remarks
/// Implements the operation
///
/// |z〉 |k〉 ↦ |z ⊕ f(k)〉 |k〉,
///
/// where f(k) = 1 if and only if k = 2^(Length(databaseRegister)) - 1 and
/// 0 otherwise.
operation DatabaseOracle(markedQubit: Qubit, databaseRegister: Qubit[]) : () {
body {
// The Controlled functor applies its operation conditioned on the
// first input being in the |11…1〉 state, which is precisely
// what we need for this example.
(Controlled X)(databaseRegister, markedQubit);
}
adjoint auto
}
// Grover's algorithm for quantum database searching requires that we
// prepare the state given by the uniform superposition over all
// computational basis states,
//
// |u〉 = Σₖ |k〉 = H^{⊗ n} |00…0〉,
//
// where we have labeled n-qubit states by the integers formed by
// interpreting their computational basis labels as big-endian
// representations. For example, |2〉 in this notation is |10〉 in the
// computational basis of two qubits.
//
// Resolving this convention, then,
//
// |u〉 = |++…+〉.
//
// This state is easy to implement given the input state |00…0〉, and we
// call the oracle that does so U.
/// # Summary
/// Given a register of qubits initially in the state |00…0〉, prepares
/// a uniform superposition over all computational basis states.
///
/// # Input
/// ## databaseRegister
/// A register of n qubits initially in the |00…0〉 state.
operation UniformSuperpositionOracle(databaseRegister: Qubit[]) : () {
body {
let nQubits = Length(databaseRegister);
for (idxQubit in 0..nQubits - 1) {
H(databaseRegister[idxQubit]);
}
}
adjoint auto
}
// We will define the state preparation oracle as a black-box unitary that
// creates a uniform superposition of states using
// `UniformSuperpositionOracle` U, then marks the target state using the
// `DatabaseOracle` D. When acting on the input state |00…0〉, this prepares
// the start state
//
// |s〉 = D|0〉|u〉 = DU|0〉|0〉 = |1〉|N-1〉/√N + |0〉(|0〉+|1〉+...+|N-2〉)/√N.
//
// Let us call DU the state preparation oracle. Note that if we were to
// measure the marked qubit, we would obtain |1〉 and hence the index |N-1〉
// with probability 1/N, which coincides with the classical random search
// algorithm.
// It is helpful to think of 1/√N = sin(θ) as the sine of an angle θ. Thus
// the start state |s〉 = sin(θ) |1〉|N-1〉 + cos(θ) |0〉(|0〉+|1〉+...+|N-2〉)
// is a unit vector in a two-dimensional subspace spanned by the
// orthogonal states |1〉|N-1〉, and |0〉(|0〉+|1〉+...+|N-2〉).
/// # Summary
/// Given a register of qubits initially in the state |00…0〉, prepares
/// the start state |1〉|N-1〉/√N + |0〉(|0〉+|1〉+...+|N-2〉)/√N.
///
/// # Input
/// ## markedQubit
/// Qubit that indicats whether database element is marked.
/// ## databaseRegister
/// A register of n qubits initially in the |00…0〉 state.
operation StatePreparationOracle(markedQubit: Qubit, databaseRegister: Qubit[]) : () {
body {
UniformSuperpositionOracle(databaseRegister);
DatabaseOracle(markedQubit, databaseRegister);
}
adjoint auto
}
// Grover's algorithm requires reflections about the marked state and the
// start state. A reflection R is a unitary operator with eigenvalues ± 1,
// and reflection about an arbitrary state |ψ〉 may be defined as
//
// R = 1 - 2 |ψ〉〈ψ|.
//
// Thus R|ψ〉 = -|ψ〉 applies a -1 phase, and R(|ψ〉) on any other state applies a
// +1 phase. We now implement these reflections.
/// # Summary
/// Reflection `RM` about the marked state.
///
/// # Input
/// ## markedQubit
/// Qubit that indicated whether database element is marked.
operation ReflectMarked(markedQubit : Qubit) : (){
body {
// Marked elements always have the marked qubit in the state |1〉.
R1(PI(), markedQubit);
}
}
/// # Summary
/// Reflection about the |00…0〉 state.
///
/// # Input
/// ## databaseRegister
/// A register of n qubits initially in the |00…0〉 state.
operation ReflectZero(databaseRegister : Qubit[]) : () {
body {
let nQubits = Length(databaseRegister);
for(idxQubit in 0..nQubits-1){
X(databaseRegister[idxQubit]);
}
(Controlled Z)(databaseRegister[1..nQubits-1], databaseRegister[0]);
for(idxQubit in 0..nQubits-1){
X(databaseRegister[idxQubit]);
}
}
}
/// # Summary
/// Reflection `RS` about the start state DU|0〉|0〉.
///
/// # Input
/// ## markedQubit
/// Qubit that indicated whether database element is marked.
/// ## databaseRegister
/// A register of n qubits initially in the |00…0〉 state.
operation ReflectStart(markedQubit : Qubit, databaseRegister: Qubit[]) : () {
body {
(Adjoint StatePreparationOracle)(markedQubit,databaseRegister);
ReflectZero([markedQubit] + databaseRegister);
StatePreparationOracle(markedQubit,databaseRegister);
}
}
// We may then search our database for the marked elements by performing
// on the start state a sequence of alternating reflections about the
// marked state and the start state. The product RS · RM is known as the
// Grover iterator, and each application of it rotates |s〉 in the two-
// dimensional subspace by angle 2θ. Thus M application of it creates the
// state
//
// (RS · RM)^M |s〉 = sin((2M+1)θ) |1〉|N-1〉
// + cos((2M+1)θ) |0〉(|0〉+|1〉+...+|N-2〉)
//
// Observe that if we choose M = O(1/√N), we can obtain an O(1)
// probability of obtaining the marked state |1〉. This is the Quantum
// speedup!
/// # Summary
/// Prepares the start state and boosts the amplitude of the marked
/// subspace by a sequence of reflections about the marked state and the
/// start state.
///
/// # Input
/// ## nIterations
/// Number of applications of the Grover iterate (RS · RM).
/// ## markedQubit
/// Qubit that indicated whether database element is marked.
/// ## databaseRegister
/// A register of n qubits initially in the |00…0〉 state.
operation QuantumSearch(nIterations : Int, markedQubit : Qubit, databaseRegister: Qubit[]) : () {
body {
StatePreparationOracle(markedQubit, databaseRegister);
// Loop over Grover iterates.
for(idx in 0..nIterations-1){
ReflectMarked(markedQubit);
ReflectStart(markedQubit, databaseRegister);
}
}
}
// Let us now create an operation that allocates qubits for Grover's
// algorithm, implements the `QuantumSearch`, measures the marked qubit
// the database register, and returns the measurement results.
/// # Summary
/// Performs quantum search for the marked element and returns an index
/// to the found element in binary format. Finds the marked element with
/// probability sin²((2*nIterations+1) sin⁻¹(1/√N)).
///
/// # Input
/// ## nIterations
/// Number of applications of the Grover iterate (RS · RM).
/// ## nDatabaseQubits
/// Number of qubits in the database register.
///
/// # Output
/// Measurement outcome of marked Qubit and measurement outcomes of
/// the database register.
operation ApplyQuantumSearch(nIterations : Int, nDatabaseQubits : Int) : (Result, Result[]) {
body{
// Allocate variables to store measurement results.
mutable resultSuccess = Zero;
mutable resultElement = new Result[nDatabaseQubits];
// Allocate nDatabaseQubits + 1 qubits. These are all in the |0〉
// state.
using (qubits = Qubit[nDatabaseQubits+1]) {
// Define marked qubit to be indexed by 0.
let markedQubit = qubits[0];
// Let all other qubits be the database register.
let databaseRegister = qubits[1..nDatabaseQubits];
// Implement the quantum search algorithm.
QuantumSearch(nIterations, markedQubit, databaseRegister);
// Measure the marked qubit. On success, this should be One.
set resultSuccess = M(markedQubit);
// Measure the state of the database register post-selected on
// the state of the marked qubit.
set resultElement = MultiM(databaseRegister);
// These reset all qubits to the |0〉 state, which is required
// before deallocation.
if (resultSuccess == One) {
X(markedQubit);
}
for (idxResult in 0..nDatabaseQubits - 1) {
if (resultElement[idxResult] == One) {
X(databaseRegister[idxResult]);
}
}
}
// Returns the measurement results of the algorithm.
return (resultSuccess, resultElement);
}
}
// Here we test whether our hard coded-oracle is marking the right
// fraction of bits
/// # Summary
/// Checks whether state preparation marks the right fraction of elements
/// against theoretical predictions.
operation StatePreparationOracleTest(): (){
body {
for (nDatabaseQubits in 0..5) {
using (qubits = Qubit[nDatabaseQubits + 1]) {
let markedQubit = qubits[0];
let databaseRegister = qubits[1..nDatabaseQubits];
StatePreparationOracle(markedQubit, databaseRegister);
// This is the success probability as predicted by theory.
// Note that this is computed only to verify that we have
// implemented Grover's algorithm correctly in the
// `AssertProb` below.
let successAmplitude = 1.0 / Sqrt(ToDouble(2^nDatabaseQubits));
let successProbability = successAmplitude * successAmplitude;
AssertProb([PauliZ], [markedQubit], One, successProbability, "Error: Success probability does not match theory", 1e-10);
// This function automatically resets all qubits to |0〉
// for safe deallocation.
ResetAll(qubits);
}
}
}
}
// Here we perform quantum search using a varying number of iterations on
// a database of varying size. Whenever the flag qubit indicates
// success, we check that the index of the marked element matches our
// expectations.
/// # Summary
/// Performs quantum search for the marked element and checks whether
/// the success probability matches theoretical predictions. Then checks
/// whether the correct index is found, post-selected on success.
operation GroverHardCodedTest() : () {
body {
for (nDatabaseQubits in 0..4) {
for (nIterations in 0..5) {
using (qubits = Qubit[nDatabaseQubits + 1]) {
ResetAll(qubits);
let markedQubit = qubits[0];
let databaseRegister = qubits[1..nDatabaseQubits];
QuantumSearch(nIterations, markedQubit, databaseRegister);
let successAmplitude = Sin( ToDouble(2*nIterations + 1) * ArcSin( 1.0 / Sqrt(ToDouble(2^nDatabaseQubits)) ));
let successProbability = successAmplitude * successAmplitude;
AssertProb([PauliZ], [markedQubit], One, successProbability, "Error: Success probability does not match theory", 1e-10);
// If this result is One, we have found the marked
// element.
let result = M(markedQubit);
if (result == One) {
let results = MultiM(databaseRegister);
// Post-selected on success, verify that that
// database qubits are all |1〉.
for (idxResult in 0..nDatabaseQubits - 1) {
if (results[idxResult] == Zero) {
fail "Found state should be 1..1 string.";
}
}
}
ResetAll(qubits);
}
}
}
}
}
//////////////////////////////////////////////////////////////////////////
// Database Search with the Canon ////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// Our second example makes full use of the amplitude amplification
// library and other supporting libraries to implement Grover's algorithm
// more easily. We also consider a more general instance of the database
// oracle that allows us to mark multiple elements.
// The amplitude amplification library has a function called
// `AmpAmpByOracle` that automates many details of Grover search. Its
// arguments have signature (Int, StateOracle, Int), where the first
// parameter is the number of Grover iterates applied, the second
// parameter is a unitary of type `StateOracle` and the third parameter
// is an index to the MarkedQubit.
// The state oracle is precisely the `StatePreparationOracle` operation we
// defined above with one major difference -- Its arguments have signature
// the signature (Int, Qubit[]). Rather than directly passing the marked
// qubit to the operation, we instead pass an integer than indexes The
// location of the marked qubit in the qubit arrary, which now encompasses
// all qubits.
// Our goal is thus to construct this `StateOracle` oracle type and pass it
// to the `AmpAmpByOracle` function. `AmpAmpByOracle` acting on freshly
// allocated qubits then automatically prepares a quantum state where the
// marked subspace has been amplified.
/// # Summary
/// Database oracle `D` constructed from classical database.
///
/// # Input
/// ## markedElements
/// Indices to marked elements in database.
/// ## markedQubit
/// Qubit that indicated whether database element is marked.
/// ## databaseRegister
/// A register of n qubits initially in the |00…0〉 state.
///
/// # Remarks
/// This implements the oracle D |z〉 |k〉 = |z ⊕ xₖ〉 |k〉 used in the Grover
/// search algorithm. Given a database with N = 2^n elements, n is the
/// size of the database qubit register. Let x = x₀x₁...x_{N-1} be a
/// binary string of N elements. Then xₖ is 1 if k is in "markedElements"
/// and 0 otherwise.
operation DatabaseOracleFromInts(markedElements : Int[], markedQubit: Qubit, databaseRegister: Qubit[]) : ()
{
body {
let nMarked = Length(markedElements);
for (idxMarked in 0..nMarked - 1) {
// Note: As X accepts a Qubit, and ControlledOnInt only
// accepts Qubit[], we use ApplyToEachCA(X, _) which accepts
// Qubit[] even though the target is only 1 Qubit.
(ControlledOnInt(markedElements[idxMarked], ApplyToEachCA(X, _)))(databaseRegister, [markedQubit]);
}
}
adjoint auto
controlled auto
adjoint controlled auto
}
// The `StateOracle` described above is now constructed from partial
// application of `GroverStatePrepOracle`. Note that we now index the
// marked qubit with an integer.
/// # Summary
/// Preparation of start state from database oracle and oracle `U` that
/// creates a uniform superposition over database indices.
///
/// # Input
/// ## markedElements
/// Indices to marked elements in database.
/// ## idxMarkedQubit
/// Index to `MarkedQubit`.
/// ## startQubits
/// The collection of the n+1 qubits `MarkedQubit` and `databaseRegister`
/// initially in the |00…0〉 state.
///
/// # Remarks
/// This implements an oracle `DU` that prepares the start state
/// DU|0〉|0〉 = √(M/N)|1〉|marked〉 + √(1-(M/N)^2)|0〉|unmarked〉 where
/// `M` is the length of `markedElements`, and
/// `N` is 2^n, where `n` is the number of database qubits.
operation GroverStatePrepOracleImpl(markedElements : Int[], idxMarkedQubit: Int , startQubits: Qubit[]) : ()
{
body {
let flagQubit = startQubits[idxMarkedQubit];
let databaseRegister = Exclude([idxMarkedQubit], startQubits);
// Apply oracle `U`
ApplyToEachCA(H, databaseRegister);
// Apply oracle `D`
DatabaseOracleFromInts(markedElements, flagQubit, databaseRegister);
}
adjoint auto
controlled auto
adjoint controlled auto
}
/// # Summary
/// `StateOracle` type for the preparation of a start state that has a
/// marked qubit entangled with some desired state in the database
/// register.
///
/// # Input
/// ## markedElements
/// Indices to marked elements in database.
///
/// # Output
/// A `StateOracle` type with signature
/// ((Int, Qubit[]) => (): Adjoint, Controlled).
function GroverStatePrepOracle(markedElements : Int[]) : StateOracle
{
return StateOracle(GroverStatePrepOracleImpl(markedElements, _, _));
}
// The library function `AmpAmpByOracle` then returns a unitary that
// implements all steps of Grover's algorithm.
/// # Summary
/// Grover's search algorithm using library functions.
///
/// # Input
/// ## markedElements
/// Indices to marked elements in database.
/// ## nIterations
/// Number of iterations of the Grover iteration to apply.
/// ## idxMarkedQubit
/// Index to `MarkedQubit`.
///
/// # Output
/// Unitary implementing Grover's search algorithm.
///
/// # Remarks
/// On input |0〉|0〉, this prepares the state |1〉|marked〉 with amplitude
/// Sin((2*nIterations + 1) ArcSin(Sqrt(M/N))).
function GroverSearch( markedElements: Int[], nIterations: Int, idxMarkedQubit: Int) : (Qubit[] => () : Adjoint, Controlled)
{
return AmpAmpByOracle(nIterations, GroverStatePrepOracle(markedElements), idxMarkedQubit);
}
// Let us now allocate qubits and run GroverSearch.
/// # Summary
/// Performs quantum search for the marked elements and returns an index
/// to the found element in integer format.
///
/// # Input
/// ## markedElements
/// Indices to marked elements in database.
/// ## nIterations
/// Number of applications of the Grover iterate (RS · RM).
/// ## nDatabaseQubits
/// Number of qubits in the database register.
///
/// # Output
/// Measurement outcome of marked Qubit and measurement outcomes of
/// the database register converted to an integer.
operation ApplyGroverSearch( markedElements: Int[], nIterations : Int, nDatabaseQubits : Int) : (Result,Int) {
body{
// Allocate variables to store measurement results.
mutable resultSuccess = Zero;
mutable numberElement = 0;
// Allocate nDatabaseQubits + 1 qubits. These are all in the |0〉
// state.
using (qubits = Qubit[nDatabaseQubits+1]) {
// Define marked qubit to be indexed by 0.
let markedQubit = qubits[0];
// Let all other qubits be the database register.
let databaseRegister = qubits[1..nDatabaseQubits];
// Implement the quantum search algorithm.
(GroverSearch( markedElements, nIterations, 0))(qubits);
// Measure the marked qubit. On success, this should be One.
set resultSuccess = M(markedQubit);
// Measure the state of the database register post-selected on
// the state of the marked qubit.
let resultElement = MultiM(databaseRegister);
set numberElement = PositiveIntFromResultArr(resultElement);
// These reset all qubits to the |0〉 state, which is required
// before deallocation.
ResetAll(qubits);
}
// Returns the measurement results of the algorithm.
return (resultSuccess, numberElement);
}
}
}