forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTeleportation.qs
94 lines (81 loc) · 3.92 KB
/
Teleportation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.UnitTesting {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;
///////////////////////////////////////////////////////////////////////////////////////////////
// Circuit for teleportation with detailed annotation of measurement probabilities
///////////////////////////////////////////////////////////////////////////////////////////////
/// # Summary
/// Teleportation transfers 1 qubit by encoding it into a 2-bit message,
/// using an entangled pair of qubits.
///
/// # Remarks
/// Always returns source qubit to |0⟩.
///
/// The circuit first creates an EPR pair between the target qubit and
/// an ancilla qubit that gets allocated inside the function. Then a
/// Bell measurement between the source qubit and one half of the EPR
/// pair is performed. Finally, depending on the 4 possible outcomes of
/// the Bell measurement, a correction is performed to restore the state
/// in the target qubit.
///
/// # Input
/// ## source
/// A single qubit representing the state to be teleported.
/// ## target
/// A single qubit initially in the |0⟩ state onto which
/// given state is to be teleported.
///
/// # See Also
/// - For details see Section 1.3.6 of Nielsen & Chuang
///
/// # References
/// - [ *Michael A. Nielsen , Isaac L. Chuang*,
/// Quantum Computation and Quantum Information ](http://doi.org/10.1017/CBO9780511976667)
operation Teleportation (source : Qubit, target : Qubit) : () {
body {
// Get a temporary qubit for the Bell pair.
using (ancillaRegister = Qubit[1]) {
let ancilla = ancillaRegister[0];
// Create a Bell pair between the temporary qubit and the target.
Assert(
[PauliZ], [target], Zero,
"Error: target qubit must be initialized in zero state");
H(ancilla);
CNOT(ancilla, target);
Assert(
[PauliZ; PauliZ], [ancilla; target], Zero,
"Error: EPR state must be eigenstate of ZZ");
Assert(
[PauliX; PauliX], [ancilla; target], Zero,
"Error: EPR state must be eigenstate of XX");
// Perform the Bell measurement and the correction necessary to
// reconstruct the input state as the target state.
CNOT(source, ancilla);
H(source);
AssertProb(
[PauliZ], [source], Zero, 0.5,
"Error: All outcomes of the Bell measurement must be equally likely", 1e-5);
// Note that MResetZ makes sure that source is returned to zero state
// so that we can deallocate it.
if (MResetZ(source) == One) { Z(target); }
// The probability of measuring 0 or 1 is independent on the previous
// measurement outcome
AssertProb(
[PauliZ], [ancilla], Zero, 0.5,
"Error: All outcomes of the Bell measurement must be equally likely", 1e-5);
if (MResetZ(ancilla) == One) { X(target); }
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
// Other teleportation circuits not illustrated here
///////////////////////////////////////////////////////////////////////////////////////////////
//
// ● Constant depth remote teleportation in linear nearest neighbor architecture.
// For a circuit diagram see Figure 3 on
// [Page 7 of arXiv:1207.6655v2](https://arxiv.org/pdf/1207.6655v2.pdf#page=7)
//
///////////////////////////////////////////////////////////////////////////////////////////////
}