diff --git a/Algorithms and Deep Learning Models/AI Super-Resolution and Image Restoration model/README.md b/Algorithms and Deep Learning Models/AI Super-Resolution and Image Restoration model/README.md new file mode 100644 index 000000000..80a580f74 --- /dev/null +++ b/Algorithms and Deep Learning Models/AI Super-Resolution and Image Restoration model/README.md @@ -0,0 +1,22 @@ +# AI-Powered Image Restoration and Enhancement Tool + +## Project Description +This project aims to develop an **AI-Powered Image Restoration Tool** that revitalizes low-quality historical photos by upscaling, denoising, and adding realistic color. Using advanced deep learning techniques, it transforms degraded images into vibrant, high-quality visuals while preserving their historical context. This tool is perfect for heritage conservation, family archiving, and historical documentation. + +## Tech Stack +- **Programming Language**: Python +- **Libraries**: + - OpenCV: For image processing tasks + - Pillow: For handling image files + - PyTorch: For implementing deep learning models + - torchvision: For image transformations and model utilities +- **Models**: + - SRCNN (Super-Resolution Convolutional Neural Network): For image upscaling + - DnCNN: For image denoising + - Pre-trained colorization models (e.g., U-Net): For adding color to grayscale images + + # Connect with Me + +- **GitHub**: [Peart-Guy](https://github.com/Peart-Guy) +- **LinkedIn**: [Ankan Mukhopadhyay](https://www.linkedin.com/in/ankan-mukhopadhyaypeartguy/) + diff --git a/Algorithms and Deep Learning Models/AI Super-Resolution and Image Restoration model/main.py b/Algorithms and Deep Learning Models/AI Super-Resolution and Image Restoration model/main.py new file mode 100644 index 000000000..f58d0e5a2 --- /dev/null +++ b/Algorithms and Deep Learning Models/AI Super-Resolution and Image Restoration model/main.py @@ -0,0 +1,91 @@ +import torch +import cv2 +import numpy as np +from torchvision.transforms import ToTensor, ToPILImage +from torchvision import transforms +from PIL import Image + +# Load a pre-trained SRCNN model (for demo purposes, use a simple model or load a pre-trained one) +class SRCNN(torch.nn.Module): + def __init__(self): + super(SRCNN, self).__init__() + self.conv1 = torch.nn.Conv2d(1, 64, kernel_size=9, padding=4) + self.conv2 = torch.nn.Conv2d(64, 32, kernel_size=5, padding=2) + self.conv3 = torch.nn.Conv2d(32, 1, kernel_size=5, padding=2) + + def forward(self, x): + x = torch.nn.functional.relu(self.conv1(x)) + x = torch.nn.functional.relu(self.conv2(x)) + x = self.conv3(x) + return x + +# Initialize the model and load weights if available +model = SRCNN() +model.load_state_dict(torch.load('srcnn_pretrained.pth', map_location='cpu')) +model.eval() + +def super_resolve_image(img_path): + image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) + image = cv2.resize(image, (image.shape[1] * 2, image.shape[0] * 2)) # Upscale by factor 2 + image = ToTensor()(image).unsqueeze(0) + + with torch.no_grad(): + output = model(image) + + output_image = output.squeeze().clamp(0, 1).cpu() + output_image = ToPILImage()(output_image) + output_image.save("super_resolved_image.jpg") + output_image.show() + + + +def denoise_image(img_path): + image = cv2.imread(img_path) + denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) + cv2.imwrite("denoised_image.jpg", denoised_image) + cv2.imshow("Denoised Image", denoised_image) + cv2.waitKey(0) + cv2.destroyAllWindows() + + + +class ColorizationModel(torch.nn.Module): + # Define a simple U-Net or load pre-trained weights from a colorization model here + pass + +def colorize_image(img_path): + image = Image.open(img_path).convert("L") # Convert to grayscale + image = transforms.ToTensor()(image).unsqueeze(0) + + model = ColorizationModel() + model.load_state_dict(torch.load("colorization_model.pth", map_location="cpu")) + model.eval() + + with torch.no_grad(): + colorized = model(image) + + # Convert colorized image back to an RGB format for saving and display + colorized_image = colorized.squeeze(0).permute(1, 2, 0).numpy() + colorized_image = np.clip(colorized_image * 255, 0, 255).astype("uint8") + colorized_image = Image.fromarray(colorized_image) + colorized_image.save("colorized_image.jpg") + colorized_image.show() + + + +def process_image(img_path): + print("Starting Super-Resolution...") + super_resolve_image(img_path) + print("Super-Resolution Completed.") + + print("Starting Denoising...") + denoise_image("super_resolved_image.jpg") + print("Denoising Completed.") + + print("Starting Colorization...") + colorize_image("denoised_image.jpg") + print("Colorization Completed.") + + +process_image("input_image.jpg") +