-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSOSDataset.py
289 lines (223 loc) · 8.86 KB
/
SOSDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import cv2
from random import randint, gauss, uniform
import numpy as np
import os
import torch
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import save_image
import pickle
from PIL import Image
from imgaug import augmenters as iaa
# disable h5py warning, but disables pytorch warnings as well!!!
np.warnings.filterwarnings('ignore')
# was 256, this is after cropping. Used to be 227x227 with crop, but 224 (even) makes the math easier
DATA_W = 161
DATA_H = 161
DATA_C = 3
class RandomColorShift(object):
# source for fancy colorshift
# https://deshanadesai.github.io/notes/Fancy-PCA-with-Scikit-Image
def __call__(self, s):
im = s[0].astype(np.int16)
h, w = s[0].shape[:2]
add = [uniform(0, 12), uniform(0, 12), uniform(0, 12)]
# add = [gauss(0, 10), gauss(-0.5, 3.5), gauss(0, 9.5)]
add_v = np.tile(add, (h, w, 1)).astype(np.int16)
return (np.add(im, add_v)).clip(0, 255).astype(np.uint8), s[1]
class Rescale(object):
def __init__(self, output_size):
self.output_size = output_size
def __call__(self, s):
# default interpolation=cv2.INTER_LINEAR (rec., fast and ok quality)
return cv2.resize(s[0], self.output_size,), s[1]
class RandomCrop(object):
def __init__(self, output_size):
self.output_size = output_size
def __call__(self, s):
h, w = s[0].shape[:2]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
crop_im = s[0][top : top + new_h, left : left + new_w]
return crop_im, s[1]
class RandomRandomCrop(object):
"""
Crops a random area of a random size, limited by max_size
max_f: the max factor by which pixels will be removed from
"""
def __init__(self, max_f):
self.max_f = max_f
def __call__(self, s):
h, w = s[0].shape[:2]
f = 1 - uniform(0, self.max_f)
new_h, new_w = (int(d*f) for d in (h,w))
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
crop_im = s[0][top : top + new_h, left : left + new_w]
return crop_im, s[1]
class RandHorizontalFlip(object):
def __call__(self, s):
if randint(0,1):
return np.flip(s[0], 1).copy(), s[1]
else:
return s
class ToTensor(object):
def __init__(self):
self.t_transform = transforms.ToTensor()
def __call__(self, s):
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
# You can do the reshape((W,H,C)) to get the original (numpy format) back
# im = torch.from_numpy(s[0].transpose((2,0,1))).float()
return self.t_transform(s[0]), torch.Tensor([s[1]]).byte()
class Normalize(object):
def __call__(self, s):
return s[0] / 255, s[1]
class Normalize01(object):
"""Normalize between 0-1, from -1 and 1"""
def __call__(self, s):
return (s[0] + 1)/2, s[1]
class NormalizeMin1_1(object):
"""Normalize between 0-1"""
def __call__(self, s):
return (s[0] + 1)/2, s[1]
class NormalizeMean(object):
def __call__(self, s):
normalize = transforms.Normalize(mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))
return normalize(s[0]), s[1]
class NormalizeMeanVGG(object):
def __call__(self, s):
normalize = transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225))
return normalize(s[0]), s[1]
class Log(object):
def __call__(self, s):
return s[0].log(), s[1]
class Grayscale(object):
def __call__(self, s):
pass
class SOSDataset(Dataset):
def __init__(self, train=True, transform=None, datadir="../Datasets/", sorted_loc="/tmp", extended=True):
self.datadir = datadir
self.train = train
self.test_data = []
self.train_data = []
if transform:
self.transform = transforms.Compose(transform)
self.transform_name = ''.join([t.__class__.__name__ for t in transform])
else:
self.transform = None
self.sorted_loc = sorted_loc + "/sorted_classes_sos_" + str(self.train)+".pickle"
# Read in the .mat file
if extended:
import scipy.io as sio
self.datadir += "ESOS/"
f = sio.loadmat(self.datadir + "imgIdx.mat")
imgIdx = f["imgIdx"]
sos_it = zip(imgIdx["istest"][0,:],imgIdx["label"][0,:],imgIdx["name"][0,:])
mat_get = lambda t: t[0]
else:
import h5py # for newer (?) .mat importing
self.datadir += "SOS/"
f = h5py.File(self.datadir + "imgIdx.mat")
imgIdx = f["imgIdx"]
sos_it = zip(imgIdx["istest"][:,0],imgIdx["label"][:,0],imgIdx["name"][:,0])
mat_get = lambda t: f[t]
for istest, label, fname in sos_it:
im = mat_get(fname)
if not extended:
im = np.array(im, dtype=np.uint8).tostring().decode("ascii")
if mat_get(istest)[0]:
if not self.train:
self.test_data.append((im, mat_get(label)[0]))
else:
if self.train:
self.train_data.append((im, mat_get(label)[0]))
# 10966 for train, 2741 for test
self.nsamples = len(self.train_data) if self.train else len(self.test_data)
def __len__(self):
return self.nsamples
def __getitem__(self, index):
# comment if preprocessing seems undoable
# if self.preprocessed:
# s = self.train_data if self.train else self.test_data
# return s[0][index], s[1][index]
s = self.train_data[index] if self.train else self.test_data[index]
s = cv2.cvtColor(cv2.imread(self.datadir + s[0]), cv2.COLOR_BGR2RGB), s[1]
return self.transform(s)
def load_sorted_classes(self):
# Sorting all the indices by class takes really long for some reason, so save and read from file
if os.path.isfile(self.sorted_loc):
with open (self.sorted_loc, 'rb') as f:
c = pickle.load(f,encoding='latin1')
else:
c = self.sorted_classes()
# save
with open(self.sorted_loc, 'wb') as f:
pickle.dump(c, f)
return c
def sorted_classes(self):
""" Returns a list with all examples sorted by class """
classes = [[]] * 5
for i in range(self.nsamples):
c = int(self[i][1])
classes[c] = classes[c] + [i]
return classes
class RandomGrayscale(object):
def __call__(self, s):
# default interpolation=cv2.INTER_LINEAR (rec., fast and ok quality)
g = iaa.Grayscale(abs(gauss(0.0, 0.091)))
return g.augment_image(s[0]), s[1]
class PerspectiveTransform(object):
def __call__(self, s):
p = iaa.PerspectiveTransform(abs(gauss(0.0, 0.095)))
return p.augment_image(s[0]), s[1]
class ContrastNormalization(object):
def __call__(self, s):
c = iaa.ContrastNormalization(abs(gauss(1.0, 0.099)))
return c.augment_image(s[0]), s[1]
class AugmentWrapper(object):
def __init__(self):
import Augmentor
p = Augmentor.Pipeline()
p.rotate(probability=0.75, max_left_rotation=12, max_right_rotation=12)
p.zoom(probability=0.7, min_factor=1.00, max_factor=1.06)
p.random_color(0.3, 0.9, 1.0)
p.skew(probability=0.7, magnitude=0.24)
self.p = p.torch_transform()
def __call__(self, s):
return self.p(s[0]), s[1]
class ToPILImage(object):
def __call__(self, s):
# return self.t(s[0]), s[1]
return Image.fromarray(s[0]), s[1]
class ToNumpy(object):
def __call__(self, s):
return np.array(s[0]), s[1]
if __name__ == "__main__":
transform = [ToPILImage(), AugmentWrapper(), ToNumpy(), RandomColorShift(), ContrastNormalization(), Rescale((250, 250))]
st = [Rescale((250, 250))]
# transform = [Rescale((256, 256)),
# ToTensor(), Normalize()]
dataset = SOSDataset(train=True, transform=transform, extended=False)
# print(torch.unique(dataset[1][0], sorted=True))
classes = dataset.load_sorted_classes()
# for l in classes:
# print(len(l))
t = transforms.Compose(transform)
st = transforms.Compose(st)
for i in classes[3]:
e = dataset[i]
print(e[1])
cv2.imshow("norm", st(e)[0])
cv2.waitKey(0)
cv2.imshow("crop", t(e)[0])
cv2.waitKey(0)
# cv2.imwrite("test.jpg", cv2.cvtColor(dataset[dataset.sorted()[2][8]][0], cv2.COLOR_BGR2RGB))
# Save preprocess
# data_transform = [Rescale((DATA_2W, DATA_H)), FlattenArrToTensor(), Normalize()]
# dataset = SOSDataset(train=True, transform=data_transform, preprocessed=False)
# dataset.save()