-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomparison.py
52 lines (44 loc) · 1.99 KB
/
comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
from torch.autograd import Variable
from torchvision.utils import save_image
# NOTICE THE MODEL CLASS FILE ❗
import conv_vae_pytorch as vae_pytorch
# Model is loaded automatically if you supply cl arguments
model = vae_pytorch.model
DATA_H = vae_pytorch.DATA_H
DATA_W = vae_pytorch.DATA_W
DATA_C = vae_pytorch.DATA_C
def compare(data_loader):
# toggle model to test / inference mode
model.eval()
# each data is of args.batch_size (default 128) samples
for di, (data, labels) in enumerate(data_loader):
if vae_pytorch.args.cuda:
data = data.cuda()
data = Variable(data) # Unneeded?
with torch.no_grad():
recon_batch, _, _ = model(data)
recon_batch = recon_batch.view(vae_pytorch.args.batch_size, -1, DATA_W, DATA_H)
data_ordered = torch.Tensor(5, DATA_C, DATA_W, DATA_H)
recon_ordered = torch.Tensor(5, DATA_C, DATA_W, DATA_H)
for i in range(5):
for lbl_idx, n in enumerate(labels):
if n.item() == i % 5:
break
# print(recon_ordered[i])
# print(n)
# print(recon_batch[n])
recon_ordered[i] = recon_batch[lbl_idx]
data_ordered[i] = data[lbl_idx]
n = min(data.size(0), 5)
# for the first 128 batch of the epoch, show the first 8 input digits
# with right below them the reconstructed output digits
# the -1 is decide dim_size yourself, so could be 3 or 1 depended on color channels
# I think we don't need the data view?
# comparison = torch.cat([data[:n],
# recon_batch.view(argsqqq.batch_size, -1, DATA_W, DATA_H)[:n]])
comparison = torch.cat([data_ordered, recon_ordered])
save_image(comparison.data.cpu(),
'comparison/reconstruction' + str(di) + '.png', nrow=n)
data = vae_pytorch.test_loader
compare(data)