-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathssim.m
231 lines (213 loc) · 7.06 KB
/
ssim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
function [mssim, ssim_map] = ssim(img1, img2, K, window, L)
% ========================================================================
% Edited code by Adam Turcotte and Nicolas Robidoux
% Laurentian University
% Sudbury, ON, Canada
% Last Modified: 2011-01-22
% ----------------------------------------------------------------------
% This code implements a refactored computation of SSIM that requires
% one fewer blur (4 instead of 5), the same number of pixel-by-pixel
% binary operations (10), and two fewer unary operations (6 instead of 8).
%
% In addition, this version reduces memory usage with in-place functions.
% As a result, it supports larger input images.
%========================================================================
% ========================================================================
% SSIM Index with automatic downsampling, Version 1.0
% Copyright(c) 2009 Zhou Wang
% All Rights Reserved.
%
% ----------------------------------------------------------------------
% Permission to use, copy, or modify this software and its documentation
% for educational and research purposes only and without fee is hereby
% granted, provided that this copyright notice and the original authors'
% names appear on all copies and supporting documentation. This program
% shall not be used, rewritten, or adapted as the basis of a commercial
% software or hardware product without first obtaining permission of the
% authors. The authors make no representations about the suitability of
% this software for any purpose. It is provided "as is" without express
% or implied warranty.
%----------------------------------------------------------------------
%
% This is an implementation of the algorithm for calculating the
% Structural SIMilarity (SSIM) index between two images
%
% Please refer to the following paper and the website with suggested usage
%
% Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
% quality assessment: From error visibility to structural similarity,"
% IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,
% Apr. 2004.
%
% http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
%
% Note: This program is different from ssim_index.m, where no automatic
% downsampling is performed. (downsampling was done in the above paper
% and was described as suggested usage in the above website.)
%
% Kindly report any suggestions or corrections to [email protected]
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size
% depends on the window size and the downsampling factor.
%
%Basic Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim, ssim_map] = ssim(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim, ssim_map] = ssim(img1, img2, K, window, L);
%
%Visualize the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%========================================================================
if (nargin < 2 || nargin > 5)
mssim = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
mssim = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) || (N < 11))
mssim = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = 255; %
end
if (nargin == 3)
if ((M < 11) || (N < 11))
mssim = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;
end
else
mssim = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
mssim = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;
end
else
mssim = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
mssim = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;
end
else
mssim = -Inf;
ssim_map = -Inf;
return;
end
end
img1 = double(img1);
img2 = double(img2);
% automatic downsampling
f = max(1,round(min(M,N)/256));
%downsampling by f
%use a simple low-pass filter
if(f>1)
lpf = ones(f,f);
lpf = (1./(f*f))*lpf;
img1 = imfilter(img1,lpf,'symmetric','same');
img2 = imfilter(img2,lpf,'symmetric','same');
img1 = img1(1:f:end,1:f:end);
img2 = img2(1:f:end,1:f:end);
end
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
ssim_map = filter2(window, img1, 'valid'); % gx
w1 = filter2(window, img2, 'valid'); % gy
w2 = ssim_map.*w1; % gx*gy
w2 = 2*w2+C1; % 2*(gx*gy)+C1 = num1
w1 = (w1-ssim_map).^2+w2; % (gy-gx)^2+num1 = den1
ssim_map = filter2(window, img1.*img2, 'valid'); % g(x*y)
ssim_map = (2*ssim_map+(C1+C2))-w2; % 2*g(x*y)+(C1+C2)-num1 = num2
ssim_map = ssim_map.*w2; % num
img1 = img1.^2; % x^2
img2 = img2.^2; % y^2
img1 = img1+img2; % x^2+y^2
if (C1 > 0 && C2 > 0)
w2 = filter2(window, img1, 'valid'); % g(x^2+y^2)
w2 = w2-w1+(C1+C2); % den2
w2 = w2.*w1; % den
ssim_map = ssim_map./w2; % num/den = ssim
else
w3 = filter2(window, img1, 'valid'); % g(x^2+y^2)
w3 = w3-w1+(C1+C2); % den2
w4 = ones(size(w1));
index = (w1.*w3 > 0);
w4(index) = (ssim_map(index))./(w1(index).*w3(index));
index = (w1 ~= 0) & (w3 == 0);
w4(index) = w2(index)./w1(index);
ssim_map = w4;
end
mssim = mean2(ssim_map);
return