-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathklm-calc.nb
3262 lines (3243 loc) · 165 KB
/
klm-calc.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 165570, 3254]
NotebookOptionsPosition[ 164446, 3226]
NotebookOutlinePosition[ 164789, 3241]
CellTagsIndexPosition[ 164746, 3238]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"\[Epsilon]", "=", "0.75"}], ";",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"t", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}], "2"],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["\[Epsilon]", "2"]}], ")"}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["t",
RowBox[{"2", " "}]],
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}]}]], ",",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox[
RowBox[{"t", " "}], "3"], "2", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}], "2"],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ",
SuperscriptBox["t", "2"],
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["t",
RowBox[{"4", " "}]], "2", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}]}]], ",",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"t", " ", "2", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}], "2"],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["t",
RowBox[{"2", " "}]], "2", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}]}]], ",",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["t", "2"], " ", "4", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}], "2"],
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["t",
RowBox[{"4", " "}]], "4", " ",
SuperscriptBox["\[Epsilon]", "2"]}]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", " ",
RowBox[{"{",
RowBox[{",", ",", ","}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<after no operation on \
\!\(\*FractionBox[RowBox[{TemplateBox[{\"0\"},\"Ket\"], \"+\", RowBox[{\"\
\[Epsilon]\", TemplateBox[{\"1\"},\"Ket\"]}]}], SqrtBox[RowBox[{\"1\", \"+\", \
SuperscriptBox[\"\[Epsilon]\", \"2\"]}]]]\)\>\"", ",",
"\"\<after no operation on \
\!\(\*FractionBox[RowBox[{TemplateBox[{\"1\"},\"Ket\"], \"+\", \
RowBox[{SqrtBox[\"2\"], \"t\[Epsilon]\", TemplateBox[{\"2\"},\"Ket\"]}]}], \
SqrtBox[RowBox[{\"1\", \"+\", RowBox[{\"2\", SuperscriptBox[\"t\", \"2\"], \
SuperscriptBox[\"\[Epsilon]\", \"2\"]}]}]]]\)\>\"", ",",
"\"\<after addition on \
\!\(\*FractionBox[RowBox[{TemplateBox[{\"0\"},\"Ket\"], \"+\", RowBox[{\"\
\[Epsilon]\", TemplateBox[{\"1\"},\"Ket\"]}]}], SqrtBox[RowBox[{\"1\", \"+\", \
SuperscriptBox[\"\[Epsilon]\", \"2\"]}]]]\)\>\"", ",",
"\"\<after subtraction on \
\!\(\*FractionBox[RowBox[{TemplateBox[{\"1\"},\"Ket\"], \"+\", \
RowBox[{SqrtBox[\"2\"], \"t\[Epsilon]\", TemplateBox[{\"2\"},\"Ket\"]}]}], \
SqrtBox[RowBox[{\"1\", \"+\", RowBox[{\"2\", SuperscriptBox[\"t\", \"2\"], \
SuperscriptBox[\"\[Epsilon]\", \"2\"]}]}]]]\)\>\""}], "}"}]}], ",", " ",
RowBox[{"AxesLabel", "\[Rule]", "Automatic"}], ",", " ",
RowBox[{
"PlotLabel", "\[Rule]",
"\"\<Fidelities with the desired states vs t \n(using \[Epsilon] = 0.75 \
for the states)\>\""}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontSize", "\[Rule]", "20"}], ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria\>\""}], ",", " ",
"Black"}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7988805061493206`*^9, 3.798880856417638*^9}, {
3.798880886709754*^9, 3.7988810908995047`*^9}, {3.798881122519541*^9,
3.79888117428724*^9}, {3.7988812043809233`*^9, 3.798881228897278*^9}, {
3.7988812595586615`*^9, 3.798881336446659*^9}, {3.7988814691826816`*^9,
3.7988815541871395`*^9}, {3.798881609390334*^9, 3.7988816345789804`*^9}, {
3.7988816884335365`*^9, 3.798881717330022*^9}, {3.798881796832552*^9,
3.798881874244079*^9}, {3.79888194447912*^9, 3.798881998659136*^9}, {
3.7988820618148985`*^9, 3.798882116884368*^9}, {3.7988822726223874`*^9,
3.7988823254628105`*^9}, 3.7988824057620964`*^9, {3.798882842510669*^9,
3.7988828863335505`*^9}, {3.7988829993410263`*^9,
3.7988830409578266`*^9}, {3.7988831520009713`*^9,
3.7988831923274183`*^9}, {3.798884233438154*^9, 3.798884238221072*^9},
3.798884277157528*^9, {3.798885736018217*^9, 3.7988857483692365`*^9}, {
3.7988858310380526`*^9, 3.798885835217783*^9}, {3.79888586591317*^9,
3.798885885328617*^9}, {3.798885969578419*^9, 3.798886021877941*^9}, {
3.7988863580146646`*^9, 3.798886359125428*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"371edff2-0b25-4bb3-9738-e062ecab4998"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1Qs4FekfwPHjFip0couUjiiUXX/8KW39aolQChUi90qykm0rIpctW9oi
KWIr94pFy0k2yjVUbrlvQo7jdDhn5mXdS+zPPM887/N5Zp55Z95n5jssr9P2
x0QZDEYG7ouj9TH++4rhQzsOJ97aPxDCBXEz1cB+FSM42pPq8TSUC4YPk/4o
UjGHWL1XnuGXuGDT2FV4X+UgTJ2bM1wTxQVHn+mX8So+MKMWoux0jQu93/9m
dkPlLOTz5VrfJnIhVXF/dIzKZcj/7WJrBpsLkVJFG6+pJECm6bFhFs0FJ+e0
gtGxTDjuEBJRf3IIli1EulquLYBRzUT6Y88QaNnR/OrrbEiKaBw0t+bB+aat
kDTxN8g4W1aZV/BAmc3sExEph54KucikzZ+hmGPW0PxDFTB1S4MHHn6GKr/7
q52FNXDe545YvSwfJjdsl8v7qQ5S/V/4MM/yQXQ2d8VqrbfwZ3SgxKl+Phgv
eBQ75DdAZLzbqMGuYWi4bNRUq9sM9ibuLvkPhkE9TjD7hG6B9s9JJi4iIyCY
7u/r0G+FEPE8Un1kBDJHSt/K3mwDzojBYGHJCMiueUS43Ha4HVOY3cYUwO8n
nx1P1eyEPbJU0HovAUztzOX6hneBWvBMLqtYAGcNathK1d3Aqts5e0tECP35
Ndffsz4ArFLSlDsghK9+7Sk6IT0go19u2HRPCJt2Sc4fL/0IFuW/Gqb3CMEy
nXXiL+U+cIqyDapWp+D8GneNAdd+aHN7Xn/IlYLNwkPLuvZ9AlnDGI+BBArk
5Ualar58gpvbsmyYzRSIl6cUrP9jACRVHqwMEKXhlFHpP9I2HNi+4hxNGdOQ
a+WV+mqKAxGdht62J2iYFKiu4N0dBLulTuOZt2h45mAplmDOhcA3B1ziy2gI
33PlIZvHBe3YmInBARpYvdbdGVeGIMhiS8uYGAFTk8sJKgY80MrNKlbfQMB1
bfOsSBsPwtKNzl4wIzD59gYnMPIzhN8Mj0nwIJAk7nbWXpMPA8tSJqyCCcj3
PUsXreGDkoW0/I+xBCTCIg9uPTMMG5t0htIzCTCeuBVwVo4A2zx3g0sxgaDk
ghsrq0ZAZ05NyqiOwMtNV6WYAQLwCt5WEthBwLhduTE+UAAqIddS09BPQx/d
UvhZALx3Jn6t6PTGWtVVFwSwf1NtmmEngaunJfTUowQgf0g9fQJtXxRlp3dX
APzvTgsCuwl8Ng1LtnolgBtOgy/tewgwrYM2R8kKwbedsa/sE4HUSrllpkwh
6Lit1h1G62/NGx6TF8K5wkCu4gABW21+tqeKEAqUB0YD0DFL3Fi7NIVAXAJO
qnMIiFdbKTFMhSCs4/UGDxKY2sZiXDomhOTunFkFHoGPei1twWVCgFjZjUMj
BB4KmGFi5UIIOLdVQVJAwOuJw4YblUI4JQNcbfSwZteF1FohxCUKNvujp1b3
ralrEYLW/8w8x9DMpcITCkNCSKhmO08JCVjwJOfyZSh4MNT7aIQmIJ1plbVl
BQUi0y9npAiBBs/rtlUrKfAeFtXbiHbolU3rUKbAtqABvNEe7YoWcywKLvh3
y35AX6xaH2dlTMEPWXcOV43i+j8ATa4bBfzBupywfwmMh4xLenpSsLx4/Ugi
2tjxkaDXm4K11VdkC9GlcnJFXb4UZJb5L+GhayP6dr0LoqDklEnR3nECPV5h
7oXRFIxvtRJXnCCwZGNpckQ+BVHaGam3JglYiZ2+9O0pBaK7k68+Rv/er+EV
UkSBdsOqw+VoZlKMztkSCjyMy9KEaDXpIyUnqijwNZaZ2z1FwEAw02HbScHg
zqMV4+ijBcbMNfMUmM13ZWybIVB8ZEa2hUFDT4AOfQAtu+TF8l/FaFDqHFY5
jq5w3S41LEXDHUaDYhxaY6n5AluehmqRrIccNM/HjtqrQwP9RoMRNUsgQNX/
TehBGu6ZSK/K+YLP+1qv7ntHGs6rqieXotXPkBqOM3632y3nG9AtdUEVe9xp
OHmf40/QBr8EP1fwo2FKrX3Q4CuB6eborD/DaahVUNjORkdcSYv8mIPHI65V
pM4RkDkvae2ZR0N36f6MPHSy708reQU4f/Zt/xfoIputGYRNg9x0ZmEbmsd8
XyNaToPECQ8ZiW8EbB4wpHTaaDAaamF4o7tjj7fkddAQt8NtXwDaJ7IhyaCb
hsqenIhg9CWfJJ0femkQ7ohPiUU/1dW32f+Zhgjt5Rkv0ErP3W/+8pWG1ncw
t2yeQMbj14e/fKPBuzu3WBGtn7xJPZyB1/l1lZM62ipsuuCqBIGl4uIHDNCh
ZrHvU+QIaNXfUXBEc5pfKVStJ9DhYzSRgj5dqdlrgV06p3R7XSZ6rjAm6502
nh9taPQnWvHuYeMOPQK7+q2YZeg9rrQj34TATu0dGR/Qefw1KbJ7Cdypf68j
v4C9uH/Fo88W77ufFaeK9rGntPLtCIiupbtYaLWysqf7HAmcucdcro+OiXWp
/d2LgJOchqQN+rh59XXXY7juE6PBdugfZ3XtNvsSGGGcbHJEz3p96Xn3E867
5JSaD9rX+N7YUuzk/RmHfRfR5gLG8w8XCYxZSzdFoNVTfUNzLhFYnZOgH43u
lN4iaX2ZgMsXs5Q49O7eTrVr2FWvsjTJTPS6+B0cp3gC/9plJj5Gz1lkP9K+
Q2Co4ol0Hpr99BeD+mQCKdfabj9Da1xW2COZTaDSAna9Rs9vCZXpekzgN93J
gXr0P9Rga3YugXvJH3wa0HGORUct/sL1PmPNbEP7L1+9XomN98n4ZNqJ3lMZ
xR/Cjnf5lVr8g17Qtf/5ShmBAvUjEv3oD/1/bzlUTsDvpnbJALo4gTWvWUXA
W8NhHxcdMD96tQa73zjfunYYbV3kZJvwlsB1X0MXAVrLt0LepxFH0yUhFPrj
+9gHYm34vjiouI+hS6KnvdvwP2BX4qM1jk7Y5q6TgZ0PqtzSNIEOHK2lg7Dz
nnPJzlNom6zv2D/2EcieiqubRm84cjd4JXbcffu6VbNoUbn5HRzstuVRW5sv
6L7qY+KF2O17nHWeX9EvLjS+iRzGzjnfd55D39X7f6wddjd27xujb+gznD8O
srCbmZY5/y56b6K46tgYAbmO3bfn0dp7/fsrsHOTl9KUFtDiIu2ZcdMElJur
Qhf96dk2Pw/swDvbgteLLvPL+F4fv6vRaP+xRSeqL5tcHOcWFjcC/wF0FHmW
"]]}, Annotation[#, "Charting`Private`Tag$2951#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwd2Xc8V//3AHCrUkSojPKRjJbwlVIap1JGRtkhe4RkRUiyJURKUgmFyJaR
iJBRRvZ8D5Jk3ktFEfmd9+/9z/vxfPB43/t63dfrvM45V9TKRceWhYmJ6T4z
ExPj+5zteEf1hP6J5VXGhwQ2JSHXIUF5MFqj0MjwgeSExCLBM6CRxirM8Oh2
8UAvSS24YPuU+R9avbXv9TNBPaB3HPBcRotHCaevihiBqweL9xJ6+Zz1I0tJ
M7jSf2zDH/RkSHedZbwlCEQISM2jDW1+V94XtIHMrc20OXSdktCbD4l2wM8Z
IUKgZcWOF/wScQClxYi5CXQii8UridQr0HiVVe8bmn0k6IWBpDNsXtqtMowu
H+5s/aDnCiDzv+ZBtOsFm3OX4t1AKFl7uBtNk7mtdFfQAzJ8Cqsa0XHJAtUS
Jp5wguNSeDX6HHfWsarE66AvMf+1DF1KtBwkRXxAUeWTdibayczs9W3LG+B+
w8UmGb3zMym9I9UXZqMG18ejo3N5d2tL3oKU7J6NQeizwmlpE5f9oWus3ckL
favhyaYavQCQM79s7oSWPyR11yg+EHQdjjHpo1O2nA+LEAwBx2TrQ6Jo39ZH
dQblIdDtt+UwH9ogdJhFzCQUnK2529jQnPNu/hWJYWCYU1g59o8E7+4472mR
OyDGczc1Ha0bRSstq74DO9gu6cehpc9IzodYRsC2NpGkIPRo0Rs34dRIMNe7
NG+K1n4w6KglGQ1B30KrudFS6mKvhBqjwd+qX+bvCs43q9P3scsxUBLQojCG
Nn/7r/C93j3YweTKW4Hesuee9MX4WLCKCfhjjg5kL9p1RzAOAn2zSuOXSdir
Ehv+2jUO1oy1BvigO0NdJiiNcaDZZt9jghZnlcqWvv4QtvFtFRFBN6ykSXd3
xkNve93RlL843p/xB0WiHgOP487eqCUSSv7nGa/69TFQu99ctkebuer+dlN8
Ai5/1oUrofNnuN/WjT+BWywTnn8WSdAZDz/meDYRnnwX5TJFJ9BuKJX8S4LM
d2udeP6QcGq7URpdPxmOPzm4fuw3rldjhTXsuckQmWtxpBz937SPde7+FGAL
r9C1RLs4HJJgoqbAN7ZfXlkLJPDa5GemH34Bvjbf3+6eJ+Gi0fP82bk0KJdZ
+dc7RwJJ0dvwQigdpku/nHyBDjNjt9VVSgfrD9v2XUUXWbsIlcalQ3mu0yIz
msv5eKivwktI/xUWvGuWhPqgAeO1fhnAv6/Sz4ogQS6HZ+129iwI/nk34vEk
CZ+k6y1aZbPAzfTJKWO0RaF3xS2jLBAM7M8QQt8tHXL9kpUFMU/rgp5MkDBe
nUt5qZkNPAP63vHjJCT1qBX+70EO9K0K3/cfI4FjNfCSyn/5kKATvMI/gvPl
YGgmpZwPqpvuXWv/gs+rW8qCxzkfCqV8X4SjT7zqs6ZU5kNUStm+P8MkvH0V
X/JGugDuWNvMdQ2RMKM7/U79cwH8nNh0/RaNBP3MR83XNr4G8UKbjyn9JEho
E+MfIoshrngkSeIzCV6fj0DCr7fwomBWwKqYBP5iHjoz83vQNXHv03yM+3NE
qaXtWC1cVxYYivYhodbx2Taj6Trg0aw26L1Iwrzkce7cq43wNUJcIOsICSyL
2Zu2STTB3yOmaWP8JBxatSjVzWuB2PyNblyLBLSEyH9u2NsGblyXMlYpBIjc
m1p8RbRD1gPNTMMqAqZ+D9F7ZDvBly3NYiSNgLTJiiau6C4QH8/Lk4giwPnR
eTHHB11Qz0+yNEcSoHDmq299QhdwVyhGuqKbnm3YfzO1C/pOqB9+F0HA3AWj
mImyLhhUyF1rcIeAE28WdOu+dsF805bbD8IIGAj+H83nSDespkZnHAokgEs4
gxwd7YYHUbEFol4EnDQIpn2d6AZq54+egesEuMeYN48Q3VB1u1XqPrqXWSBj
+E83RApJurCik8bCzaicPSBSNawy7kGAdIFja5d8Dzz9JKdf4U6AppJ0dm1I
D7zfyaR425mAWzc3PK650wMca7kyz6ILSsbCqqN7oN1UVo0NvXl3slVVQg9s
/f1FPOgqAVTOTULlOT2gce20UoATAU69c+GF3T3g+HKLZJgjAVEOJXYp4r1g
mzvTUWZHwOTJ3HCOvb1wvW+o3ButIpCedV2mFzzswr8cRrM0xhEair1Q809m
/K0tAT7iHtcXz/eCSeVRapUNAXZDcmE6vr2wrCHg2G1FwCn9gnS2zl5IuH/R
RdocxyuV2ejS1wvkZXfJBTMClllTJgapvfApsHR7Fbrsdcz+wu+9oFQ21qCF
lt7kUmK60gvxx1n5rpkSsL15f33p7j54zN98v9GEgIWT2aP2/n0gTDq6pVwk
4F3a1FOvkD5oqzU1uIYOYpfSDbvTBw5G+teU0VztOTWpD/qgRNZJf8aQAEnz
vCR6Rh9UDo+VH0cb+BVe1GvvgyFd7U0T+gSUvH3TAqL9oJUwzuGoS8AN4T/B
WpL9oPwrZVkJfTLw8FHTff3AocIp+R+6RfXtqxsH+6EpbaNYlw4Bo33lYSVq
/WBeI98A6M0LlSf3ufcDcSy/WEybAA+5uuKtH/qBP0RAY+t5nD/5HSmxH/th
wl6t8ZcWARcP3Yzk/NwP5bP3Q7vQRxXlrVgG+uHYer/mWDTL6TRugugHlRo2
Px50jHaIY73QAICWsY+wJgEBusP6J3cMQGWNxy4mtLv+sVMVEgPwnK9L4KsG
jtfoF3+h7AAEGlrXv0Jvt7SpT1QegDrutcqK6CzXMzs83AfAa1f+2GV1AhLd
UzhIrwEgNnz+pIW+67G84OA3AEl5KrMH0a7exa3m4QPQs1dr3Rq0QoC4r3rS
AJgolpm+PEdAXQxb786mARBuPJkzr0ZAaaxFzbO2AbB7rFg/jM588C5HoGcA
VOmxoi3oyEcewVzDA3AszyAtFa2TPCq7ND8AjVGSnfrooby6yA7RQXjGvO5z
gyoB7TNs03K7BkFE9KVDKbpa6qxGnNQgtDWIKb9Ep2TVcxoqDEL0clFNGNrq
ZcNdqsYg8F2brz2H1vm2ljiuMwheLw1sj6GVxFW0kg0HQVjutqo0WvxFI5eV
1SCMm2l28KLHnn2M+e41CJ/s9k3TVXB/U9lnVf0GgfNgfVwnunGb2oWsoEGo
fCx0qwGd+fjTpqt3B4Flapo3H+34sCn2x4tBEOClnQlGG3dv+KGbOQiJ3sw/
vdHqfOo6Jbl4fclPX5zRUrHNvN5lg5DVIx9ogp6Janmw0joIqdzbGhXQ9GbO
X2Zdg3Cr5LePDPrzBk296v5BqGs2vroLnRfeujn46yBk3E7bIoBOatzoOTo+
CEYiwU2b0DFrtXrOEvh7HP3v16NdQz4/ZF8chKdM3VeWlQmw+MC14PBvEBqu
uO9cQGuznDdoZqWA/6yn4CxaLqBtazQXBTKUn3wcRe98z+1F8lHAeqowYAjN
9+983wVBChhe2O4ziP7l2/6IT5wC/zveu7cDPVq+6Y/HHgq8Xr99tAXds3jh
Yq80BZ6JPKd9RDccji1TkKdAu4cFfz261KtD4PERCujM6MXWoF+W8vgsnaCA
q4mPehX60bz2gMkZCpT4fzxbgQ6Xv3+kUo0Cq+zHA8rQ3tc6H/93ngIOcR1L
JWj717xL/noUMM8NKClCG83pGH8xwvG0nikoRJ+TfVB+2pwCxqYCU/loRZcu
oTQbCgy9nrfNQ+/N4/Nd40gBXr6+HblooRldip0LBbYUlm7LQW+Qijv60YMC
oXnRBtnov47dT/fcoIDlNqOOLLTeIdNYaX8KcK4pjWY4h3ks7EAIBZaEC4IZ
XtPqfPPwHQpUOJ4uYNgs4bfb8WgKJIxc3sz4vTfWAZdPP6BAjMu2AoY3yaw3
VUmggClhGMy4vv1SrI7GMwoESwtEM+6vpl5IVfsFBTR+GLQz7l8oNvW4QQYF
agmucwVo90tSB0xycP6aFf8yxt+8q2S3RSEFWsR6vjLmR/zn8f9sSyngF9LP
Wor2q2rgc6zA+3cGE8b89t45v96lmgKRumyT5ejbOyx/eTfhfDyLza1GD09N
TPi1USAuXWvkA/rwG/ehoG4KMP/U0WpET2qGNEXRKaC1RajlM1pJcGN17FcK
NEp00DrRiaMPS+LHKWDz441kH1rTNyMl5QcFrmcsmw4z1oOybHz6bwqwWGtp
fEP/43kbmbVMge8Bb9wm0QWZTdeL11IhdanUcp6xPntnND4KUaEu723PRlz/
Ts+vn24VoYLQ8y03N6PrnFYVOsWpINupb7QNfZ2VR4wqTYUKe/uyPegBWflF
8jQVCuiC7GpoueV3xC8VKmQnUGy00RGNZ0cXNahAl1P/Y4Q+ZmbYxmpIhdBR
/g9X0MmRN9L5r1Ahwjv5eyz6jwHr0+2uVKj6xL74FH1hZ9Q9UU8qbLQfO/kS
zfL2me8+fypItQ9fq0DbjlVrwwP8u+2q7Th636l1/+wqqPC4faeHBsargqzs
Xf3VVIjmbNlogpbffEFbrYEK3X2jYw7oY98T0vZ1UOHqnqOG4Witu3vVZ8eo
kKOlLfMR7T6gmeDDSwO72eQiXYy/C6d/1Ezy00BgkzzYoX1z4qdMhGnAKhW+
3gcd4j904sRuGuT9d9o4GR0v4faN5QQNGjJKJgn0W7c4uSgHGuyq31P5GM+H
E5TDl1acaTC3KCNTgK49Qwt19qCBYerBoQZ0E7/kwAV/GjBPcC7+QlMr3/hv
eUiDzKIwXj08b5g2UFqSqmmw0KDRIYznl8oL0cuF/HToDfglMoTnn3wCl2TD
djo8lDRQ+IveEf13dFCUDh6easH8eH4u+fRYsUnRQcOtpOwCOlf7jpnhSTqc
+KmTUI/mY57TX7Gnw/yVFZG3eF4PmVefUSunwx1Bp8UGPM9b9HNZzd7TIbia
J3ICXab+pNa9jg7jESXnOfH8v6/gcTLxMx0cOGrddNBnuXcfI0fo4F7vyf8F
nV0Vc+AhxxBU8prQ1ukR4CVsvvPLpSFQVbWdu2GA59UFWQOq5RBMSqotvUBr
BTNH9NkNQVa7v1wzWnIida7VdQjcaLmy2zGf6S4ery4PGQJhvlCrarSshrt5
XM4Q6G+oieExImD8RmiiyvIQyEt7ZPdiPiU1rc/RpzkMwanXU8Yt8f71NN5H
XBiGTZMyDjswn1OqPH3thO4w1C7str2INo6WoaRfHIafyrcXPqLvyK7P9rAe
BlvjnJs51ng+erw7x+szDBYP97P5Yb6YsrIzQjNtGLLt1ByVHHA+uWfZ65aG
ITpF+b2FGwFs75/miyV+gaM/WZztggi4Il8xsF59BNx3cVhpPML5UbNKqVpA
f+Pu/5pLwPyU0Kax+K9wS1Cy3aUO8zVdFda4M6MwfPoUwUsnwF81NLl4bBRU
OFaNyxcIEKWd608N/QZrDeYPHuImQVEhJE5QbgwCH2n+qNxDwqX/2haZu8bA
3mV2i/BprFea7o64Bn6Hlvfi6TUmWG+xmXnoiI8DJ0nVzXYngY9e8oKlbhzK
Ur0TJm+TsMYvUO+I2wR8PBu1wfQZCUyvzPJHeCchp7elpjCfBPcn+Xd5aydB
tjxCK6aGhMp94ew8zlPQbXs9cb4d659u/tb7rlOw4bn2z70dJBTczIjdfG0K
ZjNi9lmgX7Q2CAl4T8G1uD0nm9DhLmv2iwRNAZ377mJiJ9bTRUHa++OnANd2
1rFuEr4r+j1Rq5qCtW8T/9j0kcBzzl0qiGsa1nqk0y5ivZdSw82hyDMNhaXF
ehFo2SO5E3N80+B3TTWjAq21e/ylpeA0iE4s0oXpJESsNRM9JT4NzKPOCcNo
tg9qW5kUp+FqMt8Bc6wvF46KMt2ynYbSIJLt1FcSqPvbu3zeTcNz8fTdj7Ce
TZ7i8WN9Pw22ylld79BWr3Ql79ZMQ1fogtkIekK8zzulYRpuejls3Y/18MI2
unBj+zT8MKOz16B5Nkxf3vxtGlqenVkZwfpZeWzdct7GGfD85ijDPUPC+jS1
9MObZqDZT3NMFt1iGalVyzsD40s5fjpoXRrX8x7+GdAXmtJ8iLbo3qK8LDoD
NY9TPASxfvetFbundmgGxISnqNtInP8kEB81m4GwBZG967H+/3nj5zpLyxn4
0XjXXBJ9yDBjimY9A3FHV68roSu4uYv67Geg4PdvdT90QwD9VLP7DCTeio4m
0RQrP/PXYehPbd6ff5CwdlfFk4C8GfBLq1nw/EWCGqvLrZWCGWDqMnCPQUcN
7bS6UTQD0r7a7ZlonoSIPR5lM1DYF3KAgt6+3rjscu0MPDp65tGJeRLkpv70
aPXOAMc5xb5VtGn+IR7hfzPgfr9Ax+k31ufGf7jamTAOmtOWgtFca8s5g1kJ
SLWuDHiKrr50nH2CHevojGyJJvTODWdWi/kwb0jo7Jb4Q8KYjfaMxh7MY9Sn
WnrRzkJOn25inBJvSj4nsoTjrd/fKINxhqxIK5JDi7iRdSMYZ1ZzNv49i25v
dK9WxTpw4rSYhBNaztPnzWasQ08HsX0vRf9uC0vP8ce8PWdaUvkvCQGhzwOp
WeiGqVr1ZRI2eq07Z4n7fvHTQSZj9BP7q7xj+ZhXmE/usEcXqR9JJYsJ4G7N
5AxBj/F01LG8J+CAFW90OVo9iYl9TxcBgizWx3eukNAfY9ee24N5RtVokTTa
JrAlQa6fAMN1e7iOom/ZJOw5RsM6sobbWRddsFdW/fx3zFsu/aIEobe+MY/2
/EvAzWghTyo6NbPeYGkF87JY173f0bJP9on4M5GwODX6YQ6t5vc7P3wNCX+3
nUxd+4+Em0oxHU8xDkldtN0sgx5pq9pcK0ZCrFVS/Q20S404TVmShC21Ke+D
0cuvI9Kbd5MQOLwjKQq9Jd7gUM9+EmpzXrMnoVUvEYbjCiTwBjXGvUfnjgs/
5dIgYXZFIHoFHf4s1IKuRcLRopuv1qzieHVmJPK0SWAZ3Zy6Eb393bsCTUMS
MorX/E8YHRFj0hBlhfuSY6hMEW135kPkJVv8Pw9qwyn06cW92lL2JGi36RWp
ohetlijNV0nwmh/YZYC2P/R4boMP7pPdsgEu6DNTTG8GfUmQlF4N8kSLpNjf
zLpFgvnneza+6N71h9edC8Hrse+oC2P0a2m92+/EkDBzf3r+KXrH/RMjF++T
oOf1mUxh9LOVX2bsfkji86n4mI4uLvCU+/gE48IpGn8+ox8csll13UsS7v0+
LsXoJ/87fHNjXyYJmb9uitShB2a+dr7MxjhxlOcHo/98z7DIVLmQhH1TZgfb
GP1lzm1iW4vx/lb3vuxEq9YEjX8rxXVf4rbQg17dq3Mt9B0JoVFxB6nowaG3
h/XfY5y/ESw+xOhXx4n+E68lYSmV9+cXtPO/2fC6RpwHVwWZ74z+dtFFrbgm
EvYyDScy+ukS9tV8Nq0YZ9K1JqfQ1I6YJNYuPFeOpInPosvCflt39ZDAcSCJ
5wejX37UfE9qPwn6l0LoPxn99dkGwp1CwtQZi0hGP189Xbr4NMbpooCjAr/R
ksbxPrxfMO5liIQy+v8s3P9OjGCcvqK3tXMRTf9gy/Z6DOPMrj2rjPcF5d6t
nwIx7hrXWnIy3ifE7z8Yoz2Nz7nl0yLDbiOJeqIYJx3mHBtX0BqP2ITmMM41
07Q8Ge8jdms4DVVjnKIp+bP+//sM5u60exhXeAbWuDM8XHLU0QL3/XWD6WqG
3zmmysjiPinxPjbL8CMRjnnGNzMT4zML/wes6zK+
"]]}, Annotation[#, "Charting`Private`Tag$2951#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1Hk0lnkUB3BbtrJTg2xRkcQgRbhTqWyZUEMykkEyWVssURElkRhTRpGy
lCWvsjXVIEsqZF8Sr7x27/s8P2mRbHM95zzndz5/PMu999yvipufnQcPFxdX
Jt7Lp6XHeGvVxCFTww+2WxUVmcC3W85/QFYffk20s/BXZYLe3ZQ7xbJmMFAS
7F2tzgSrpu4nabIHoTfGrt1TjwkO7jP/Jcm6wxUhIcMicyb0a1/ZHS97Gqik
oXV7TjEhQ+bXy7GyUVB+xXDozGsmRAgWb7wqmwyqzJSC0cABcDx8jzH1KQtm
ml2qVAI/wsqlCOd9igzYIFSqJ6I4COtt6fGaayWwyk0wL7duEILeGULKl3+h
mD9UbDqEBWtKJJjc3JXgEiqVcUB5CMpYuxubjatB5SeLMZm2Iaj2TpM/zKkF
X/e/OP+ED8PXDSZij3zqIbUwIT1KbgR4ZvPF5de/hRHJPpWpqhEwWHItsy9s
hLtrXpoGO45CY5T+u1ebmiHuvOXMxolRULrBns2lW8BMM7Y8NmIM2DMDzE6d
Ngg6OJSms3IcsiafvxW93g5MiZQOo9vjIKrwgAwPd0BUO11gpDoBcSdKPTPU
umD7ZFCZfNoEfPslf9jrQjek6RzNeSM/Cad1a0tW1/TAOxumwZu4SRgorL3W
qtILobHlH4K52TDn3XFbI/QDhPTIHNb1ZYPmToFFz+d9UP1+ZPzkOzbsu69y
/PEaJmSJDMko/8yBIIWj6wadB0B6lVHXyhgObOYcWtm9/yM8U9/s5NPDASmx
KcHaHx8hrzHU68AmCvgqbzNU7wyC95hHeU8ABX/qP38vZMWCOfs6ny3PKMi3
cMuo+MYCv7JTkzLzFHxly4mP3hwCExMPB5WtNJTa7+NNNhuGsbquEDtfGi6Y
R98tGR0GXaGzRSF3aVDpt+zJjB6B3kZFwa4GGoy2RSXL6o5CxdKQTe8MDc6K
zbPc7aOQ32rWulWBwNe38Sx/7PN5p1nlrp0EUvhcTtupjUO21eX6BFcCUszS
+zy14/CzJc+Bv84RWBEecdAwYAKYTWWMhL8JcOW6MFiSk+DdvqjZm0cgMJUR
L1k9CVeNOW19FQT+04wRlMA+Jn66xklqJmDQsaYpyZ8N7MqKuQZ0UdiDROlT
bPBcqhjmayFwv+mV3E/BbDh33dzsLDrGb4WWUiQbbg24Gzm0ErArjrTVusmG
1oejQpLtBMaMwlMtKtjgNrHg+2cXAQnLwM2RohzYsIUhw+gjkPFSbKWRBAfc
lRX7WWgdw0cTn6Q44NTGG7q6n4CN+njOMVkOpE8c0Q9Hx/K7qOxU48DamsMF
5kwCfDUWq7mMOPCvh8uT7gEC33aocJ334IDVwzbnLhaBPq2W9pAXHHBWn3R0
HCdwly0RzlvJATtvJ5ELaLdc+w3xL/H7noPp2egJte7gjFccyLGyPzyN/ibP
VKhvwedrszbHTuD/C3OOS49woD5x0r54ksDeUYH5QhEK9Ngb+9gcAkJZFtnb
xSmYrnm2S5Qi0Hjsmk21JAWnNV2v6KDt+0Xvda6hgNnJnX8a7dohs3dehQKx
rFDnOfS5atUbFgYU7GkS9eMh2P90UBt2oeCeLDtmZorA59DPAseO4fdEJDVk
PuG8HB6w+/+g4JDptVxd9HMxseJuLwp+0U208kG/usjc2RBIQbZ0qfQg+oNb
+NEnlylQpXNeVk8T4N/4PPViIQWeLOunvl8IWPD6nV8ooqCmLMM/Bh03sM4t
tJiC4nhN4ftoiZRYjdNPKZhN5hnsQK8Vcnp6vJqCn4XDFA2/EtBlf++06aKg
Wf4Ncw79O8NAQmGRgvnw79neMwTKnL6LtnDRwPE08o1Ei/I/W3WJl4abl8yl
UtFVziaCE4I06HZwPr9GrxM2WyqRoiFreL/4+u8ERt1tKWsNGnxDtf7rQvvK
nXwTdpAGnzvTaso/sN46rXptBxq+aDff0kMrBZBa1mEaCvkTx/eiW+oDq8yP
0lBgPKbqg9Y9E1Iu7U2DGKOF5yl6pvlydsEFGpK+aJzYN0fgYvS9iL48GuI9
jaT3zxMQCRKwPPaIBu+AEweOoFO9fCRHGbjXIZ1+J9DFVoaZpISGUOWLjtHo
UYnWWp5KGv6Y/dj6HG2VziWo0U4DX1CXt+oCgZ4Ez5ZHnTSID4sxtdHuEY0p
uj00DB34om+MPu+eomHcT4P1pffxB9FFm3Ssfh3DfoR3cC6hV5cfvX5mjgaT
gkiPfnTmw7rffizQ0GyUvnocrZOqqXSBi4B6QWv+NNoifIYRs4JAovntSIFF
AmG7E1pvixHYlnmWpY1mNVdIV6sSMF2hH3AO7fdSrX/vBgJ6Z2c8o9DzT2Kz
G9QJKMeb7oxHy9z8zaBTi4Dx2cDMdLS5M+0wvo1AR/BmpSr0o3GF26LW2Oe8
ytkFdExatCvTButI+EmCfwnrtaPWF9oS+FupnF8UvfbFi6L9DjjXtZNxCujY
hCOv4twIXDDU4N+B9jSruebsgXus9Vh8F3rX7CbbzV74XqfXs+boWbcfHxp8
CDD43hz/De1l8M8n4RAC/jVSJX5oMzZXeS/m5PATmZIzaKUMr7C885iTP0jS
OXSX0HYByygCyQu21GX0nv6utVcTCJwKfytzB62cZMpyTMK5v48XuYee35vz
QB1zdt44cDgbXVJ0Rvd1Ks7lQLU2A70uStpcIIdAbl2YSRV6cXuYSPdDrCt6
j3Yt+j011JaTT4ATF8T1Gn3Dofj3vY+xLwE7djajT66SV11dQuCZxUBRG9r8
ZeT4SBkBcVdxri700ia7U9EvCMhtMjXpQ/cO/Lv9UCUBjQZrzQF0WbLKolo1
5lrUqtlBtO/iVExtPQF94Rq9MbRlsaNN8lucf2lDxgR6vVeVlHsTgZFtuRQb
3deakM6LOa7vz79xCv308swf7Z0EAmZuSU2jk3cc1cjsIfDPrMrHz2j/qVd0
4AcCakcexX1FW2VvKdmFOd22uEt2Br3B6WaI5CCBvDp29Hc0j9iiKWsI9+56
UdssmlnjwfdklMAv21OXfqCfBTe9icDcdU57vGoefVNra4It5qxHytLssgNY
dw6qYE6WcsfXL6Ctb/HJfcKc+8xwO7OIVrc+OVCFOTUfdJV3Cc3H3ZF1A3OF
X0s4cNkfS3d4u+LeX8qgqpb9wjtTWwf3ZMt946ll31Ja+XX5XFxavgj8D3Iv
g6E=
"]]}, Annotation[#, "Charting`Private`Tag$2951#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1Ak0Vev7B3BFRYkMFSI/YxLCTUnD95ZkikJCIWRKA0pdKZmllNzylxDK
UEgyh0iIVCTnmBJySIZzzquRyvB/715rr70+a+299vu+z/N85Vy8Ld3m8/Dw
zNL7v6eJ28i7mlHr7au3FIhtKWCAT1/Kp19yA3ouxaT+579SE5KLJHdBgSOt
v416SFox5B9lczhetJ8FtWlzZ+Edyf3oO2T2Tp9a8apM5pysHQYLSaUR9bTJ
kVvOyo64W6VfbU49Fs6sd453xqY64y5rahvXyaobkq7IXzl/sSN1vb5UWV2y
O3ilT1h5UGsqbHv8XfYoVm+PLvalTp7vlK2UfgzNU/bqgdT8rNB7B5RPopPB
qrpMXfGxrbluvw9Gj8i436L22edqYh/vi9smS5WzqHvXX9K/JumHdpYwp4E6
LlWiRunQGWhIKH7vojYRztlanXwWlbkTomzqUu4bHSJ7DqJhpbeWFzJw3NGx
8JJzAL4WFMyso5ZvIRr/Sz8PzeVHz+tTx+SJqlgoXwT5sKz6DLWBTEbGqEcQ
Km/yhsVSX2xIXPZ8fzBCFcoOP6TesFHtml18CI7zuDt9pk5bvjfyimQ41FgC
QV5FDJxvvlV/oCIcPJtV58dQH4j4OF/hUASCpVfeKaQW/OEbVJkciXEbB6k5
an9mnD9b9jJCxFu0M4sZsLraW/qk5jL6x8L93lFr7FL+Ee58BUm6K1tmqYeK
ynxl0qNhkd7x0r6EAYub773MlWOw4sjsB6VSBtRMFbKlGmPww7Cl9yA1P+/x
z8Me13G4LvpnLPXh8tmCZ/tjYRHc7c1TxsDytbEatvH/Qozwh7KpQ/iL1lyW
jMN6c5U1v8oZUDX8N6rQJw7mMUvSDSoYaIvwHu1pjMOsspLnTWpFXrVcjbP/
hw2bBVu0KxlomMnQYLbFo+CmgkDIU7rfb/E6sldv40t74N+HnjFQonUm3mjw
NsQGBy2eUjv6WE366iXi70uvH66uYSCfI1xeP5KI0NoN+ExtORK11csgGYsF
FnVeqmUgoTdAv2Q2BT270jsXNjCwQ9ouo886FX89fB52gXrs4KYF/HmpiFGu
PveNejX73JE89TSQRi/9T40MeB/dqMTzIQ1uiUbmXU0MiLrmP8jUvYeix9OG
080M2NrdzZ/4koGYl59mtnQyQHr2L74nlQkVneNOrdSRjvxuVvqZCFezHXTr
YqDoiLdUaVwm+DUumMR1MyB0clvE+U1ZeGFWljLbw8CL0O6DCwPvozZb101g
gAHthyILpflz0G/dlTI5zkCTxgunZs0c6G7fIf2YzYBTgX/lRbsctByYX3mU
w8C10n6fgZwcdEc9sv/IZWCkJq8nyywXm6OTtHq+MJDSblygdfMhxnMt1y6a
YmDJXIi94ep8iEn0x+guYCLhqI2j2u58TOUrfFm2kAlFppqTyMl8VJYneI1R
b8/uPNJTlQ9Djm56Gj8T5dnxJWUaj9Fx2VpNSpAJjhX7qWnLY6Td3pa1Q4wJ
6we3Xp9eWoiOByUXXOSZSHYI3eMuVwhv3pudDgpMsERPNNvqFMIpudvkoCIT
3oE7325zKMR6iTcBB5SZuGzJaVuUV4hWyWPz7FWZqJre+T5pTxEWPmovTNJm
QsmCO1IXXQzj26ZfOfpMSAUZ6nncLYZusl69ogETy/LSoheXFSNOp3LAfjcT
v/mtNCxYxfhTkjvXasREa03Z6T7dEojKD798acZEgGbI7NSnEmQubbjz04aJ
FmFxcY2/y8C7JKrS9AQT/7RsRsL3clieV9LrT2JCSKPkUxN/BcID7UT23mEi
45rm1T/SFai5/kqwJoWJd3vWdDsaVKB3cZJP5l0m1r0WP60UXwFWij8n8D4T
/Y0kq3BTJZJ+W7x0K2LC8HmmUHPAU/B1fXIVecPEymKRvnnznsHCz+9QD087
Sln6b95urYXRwIC0elg7ar3urLJj18P4wUHTSIkO/FDeJpx3ohE+qvK7tco6
MP9X7rJVSq+QNSGxM96/ExvnnEqtHr1Bz3OxL1Y7uvAmfENLg+pbrE7Xy5CV
7IZs7PivbG4rmpI/lYVJvMf4ZH9fu2YbLPzPeiVK9SBjrPKVUAwDr9QEJm4Y
foCQzH0yNMSEg8Oz6LGwXlw9WuKeptiBd/mBZ5lP+/Dz79whz6BOLJDbMs9K
5CP8tOuLV9R1QSJN4O3+mo/of1Qf/U7uPTRlZ3qZEQP448VMWhvQA+1vJ1Tu
m7OwbseiWffKD9BpTZSWFh6E4T05j4KVffCUdRkRGBrEPzKH5Qfs+6Gjl9h9
KW8IamzrJZ1mH2HKkarY5fcJYsIT/PW/P2JL1Ihnnukw+J4l5SskD2D7sc/T
i8U+49iGym4BUxYOXk/Ymf35M3KNXdKqf7IgY1l826BoBD/GpZYNx9P/doUG
6B0bRYmVIW/criGosL/v61QdQ5BRRGrx8BB0R4UK17WPQa7XpCs94hN6/ZnT
uqfHobcpPE5Sexg5k9c0WGJs2K9++2seYxgeVe4RMyls/Hh1jeUT8hlaPYb6
UWs5SOBz9LNUHEHYVk952VQOxPpK7s2vH0EHN/ay4SIuFgSG7N/sO4pv39uV
B45xwZPtmM8SHcMWia3Rh6q5OJWYf020dgy3zarsc5cQlE0nXqqtH0NahcGt
WkGCacfIkFONY1gSLC/RvZTgkoLDmbY39H24c3iXESQ/XOxwo3MMq8nk6D5x
ghfVbmqinDGk3EwyeSlNIDG46rWIxDjMNxtnq6sTVK2L4hc5OQ6+iSmZHlOC
jcyVzTd8xrHjq61TyR6Cxxfu/ytOz4ET4y5w3YzgXnODlIT/OOTHlsb+vZcg
ynuBumzoOMbM15xOtiSwLAq1UI8fh2pFcN4mO4LPeoGJxtXjEJXQ7512IxAx
OaUWKsRGkax7elMgQdpz4SV6Imy4hVp0XLtIoLk5b/QLPWclO5HDFkEE5ioj
Wc6SbEwq15/qCCa4stBRbociG6lHvtzvCiPgqzNewaPHxsO+Y75Vlwl+bpHj
uejGxoCfTZ3A/xFEFFX36XiysXLmmUA5tfg6+yqOFxs3k5/nesQT/CV1K8DB
h434a6a8dbcIfKYEf2w9z8ZXy+QFpxIJRounRv/EshEd7RxckErwQb2Vce4p
G3tfMG+XZROkjosE8j5jw6XGz8Moh8Al20r52nM2zr2dyOmiHlXs9E9rYMNG
WTJuMpeub1WfTGMrG9/fen/TeETPYzHbQ/wTG3NK3vzhhQS7hxdNP1rKQQM7
KuVlBYFAhnGm7jIOdAdvnzaqJHjjHG1eK8qBwlafukZqq16hu+0rOehwWcKs
f0rgxFy+e1qO9qHPvqon1QTnaxVijTdysODKy7ZLtbSeKVAccuQgjK9Atr6J
4FvAt0XOzhwYSF7z0npF629zf7z3CAfTWYp6KdSVwsJFnZ4c7CqR9jz7mqAh
uG/H61McsGrMeeWaCXpcAg8XRnLADi+wOdxKsHBNZWLwIw4aXf2DQzoIjHm9
L8485kDI/U1uP/XVfnmXgCIOZhbcdNrWSfefcGWt3xMOesyEPSappQUOPvGo
5eC8xfC4WzeB9vhUu3kHBzc05X+qfSBwyN8oIjPLga/m+eWuAwSlB6eEWnm4
4IZMnK2gFlpYIRjGy0WA8AnLZSyCGvtt/KP8XFiPbfWvoJZfvGuuWIyL/oqL
4fxDBMOuFpw9a7l4OPKsKXqY4KTU8aYL+7moXRZnqzlO9/tCvXG9DRd5FXa2
Z6llfUk9y46LNB21rkrq1sZTNUaHuQhrKrM1YNP1njlXJu7FxRBPjoslh2Dy
bWTmwyAu3LR+1u0nBMERd0M+5HBRv9l9yfRXgqX/LDJxzuOiI7LglcY3gkTP
E6LD+VzMFjXIOlMXmW5OJ8VcdPuNRtdTD4u8q5//jIuzZqY+kd8JTFN4+Ncy
uJC+aRr98wdB13X31rx2Lo6ctiiX/0ngGvImQbuLC6G2K0Hm1BddE9Zu7eVi
8JdWewb1Y1VN072fudAuiszeM0mwouxwzJk/XHyPHFx5eYog/cGLA79nuNDM
Ueh5RK2ZuE42iIf2ofWMLpPaOHAyP2oBQRtWvJD5RXBB//q7JGFaRzNBhYfU
rLfV4rUKtK/+eK0s/U3g/Vyxd7cyPeddKvHt1NOFVzJfq9A+FR8o+E69PP7A
xnaaSwc0e2u0/hAY2XNtRjYRrM9V2nGfOm9EJkmI5pK00ip20DTNnzsRTn3m
BFphsZuTqV0tOUqPLAi4FxOFnlBLP3362MyGwPD7tn1c6ivXDzVcdSE4l3Nh
k/UMgfuuumh7mktJs/saT1Dv/KVqoeZJ+9jX/mME9S+X3z2vTxA0Hxp9VEzt
ufH2l8XnCBR0YuoEZwl2jfOUvT9PMJLSck+OWjbN80IOzTH13GHBjdQdArqL
TMJpXSxOhDpQG/R2SF++TmBxI3gqi/p/N7azbG8QePCpbnhCPb07674Kzalv
0cbTL6mLH5/RfklzyPp0ufYotXy4uNGiLJrjwzzbFecIZnUvLO18QOc+dI6l
Rd3NGWzLojlTHrJsBahjbYocdhcQbFq7aY0t9XHBVQorignqAooWuFIbPQ8d
+VRKoBoqfNqbek7V8nQEzRGze3/9Cad+31+ua/2Mfi/tsuI6dWmc3KwizRED
oW3PE6hPzk5E1TfS+j2pb8ihNimyNY+jueEd1SlXRK3kWSPmSnNCgOfI0krq
D++up/AyCGLy8+ObqJ9ETh5htBM8K+7Y0Eodt+Xw2vQu2gfTO1w7qH0mGrin
egju7ldU+kBtmqlRvLOPYCbs8T8D1MoH48+J0rnX2y1pP0w9X3h2O2uQYMjs
37Yx6r46N75COtfD+qY9XOoK/+amkFGCW43nzn6ljlfXuW5B5zbt5N6MH9S+
rOT9cnRO/9TPuk5R77nFJ/XlC8HEnoonv6lV9hzvr6FztzCoOHWamm8eMyOW
zs3vJlmpWeqPJVu8nGgfl9zQUJmjfuqVvl6T9s2+DWKv/vMt2SU//nv+mfvv
Ivh/on1F/w==
"]]}, Annotation[#, "Charting`Private`Tag$2951#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0.30769230769230826`}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {
FormBox[
TagBox["t", HoldForm], TraditionalForm], None},
AxesOrigin -> {0, 0.30769230769230826`}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
LabelStyle -> {FontSize -> 20, FontFamily -> "Cambria",
GrayLevel[0]},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}}, PlotLabel ->
FormBox["\"Fidelities with the desired states vs t \\n(using \[Epsilon] \
= 0.75 for the states)\"", TraditionalForm],
PlotRange -> {{0, 1}, {0.30769230769230826`, 1.0000000000000002`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[
FormBox[
TemplateBox[{
"\"after no operation on \
\\!\\(\\*FractionBox[RowBox[{TemplateBox[{\\\"0\\\"},\\\"Ket\\\"], \\\"+\\\", \
RowBox[{\\\"\[Epsilon]\\\", TemplateBox[{\\\"1\\\"},\\\"Ket\\\"]}]}], \
SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", SuperscriptBox[\\\"\[Epsilon]\\\", \
\\\"2\\\"]}]]]\\)\"",
"\"after no operation on \
\\!\\(\\*FractionBox[RowBox[{TemplateBox[{\\\"1\\\"},\\\"Ket\\\"], \\\"+\\\", \
RowBox[{SqrtBox[\\\"2\\\"], \\\"t\[Epsilon]\\\", \
TemplateBox[{\\\"2\\\"},\\\"Ket\\\"]}]}], SqrtBox[RowBox[{\\\"1\\\", \
\\\"+\\\", RowBox[{\\\"2\\\", SuperscriptBox[\\\"t\\\", \\\"2\\\"], \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}]}]]]\\)\"",
"\"after addition on \\!\\(\\*FractionBox[RowBox[{TemplateBox[{\\\"0\\\
\"},\\\"Ket\\\"], \\\"+\\\", RowBox[{\\\"\[Epsilon]\\\", TemplateBox[{\\\"1\\\
\"},\\\"Ket\\\"]}]}], SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", SuperscriptBox[\\\
\"\[Epsilon]\\\", \\\"2\\\"]}]]]\\)\"",
"\"after subtraction on \
\\!\\(\\*FractionBox[RowBox[{TemplateBox[{\\\"1\\\"},\\\"Ket\\\"], \\\"+\\\", \
RowBox[{SqrtBox[\\\"2\\\"], \\\"t\[Epsilon]\\\", \
TemplateBox[{\\\"2\\\"},\\\"Ket\\\"]}]}], SqrtBox[RowBox[{\\\"1\\\", \
\\\"+\\\", RowBox[{\\\"2\\\", SuperscriptBox[\\\"t\\\", \\\"2\\\"], \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}]}]]]\\)\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.21] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.21] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.21] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.21] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontSize -> 20, FontFamily -> "Cambria",
GrayLevel[0]}, Background -> Automatic, StripOnInput -> False],
TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontSize", "\[Rule]", "20"}], ",",
RowBox[{"FontFamily", "\[Rule]", "\"Cambria\""}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "0", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False]}],
"}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.7988806543617334`*^9, 3.7988806870233946`*^9},
3.798880748003292*^9, {3.7988808194945335`*^9, 3.798880847925705*^9}, {
3.7988809030372314`*^9, 3.7988809401510878`*^9}, {3.7988811702245235`*^9,
3.7988811749123898`*^9}, {3.7988812904624763`*^9, 3.798881308945037*^9}, {
3.798881469735221*^9, 3.798881554885368*^9}, {3.7988816153044186`*^9,
3.7988816378897223`*^9}, {3.7988816975442543`*^9, 3.798881718363146*^9}, {
3.7988817986966147`*^9, 3.7988818750308886`*^9}, 3.7988819240800977`*^9,
3.798882000808167*^9, 3.798882328734208*^9, 3.79888288803487*^9,
3.798883058704372*^9, 3.7988831937642713`*^9, 3.7988842401651835`*^9,
3.798884277827384*^9, 3.7988857531372423`*^9, {3.798885973076638*^9,
3.798885981718808*^9}, 3.798886023015074*^9, 3.798886360376709*^9,
3.7988871135254*^9},
CellLabel->"Out[1]=",ExpressionUUID->"46af845f-f010-4297-9871-4179dedd52a3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"\[Epsilon]", "=", "0.75"}], ";",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["t",
RowBox[{"2", " "}]],
SuperscriptBox["\[Epsilon]", "2"]}]}],
RowBox[{"1", "+",
SuperscriptBox["\[Epsilon]", "2"]}]], ",",
FractionBox[
RowBox[{
SuperscriptBox["t", "2"],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{