-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathbase_model.py
121 lines (102 loc) · 4.19 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import tensorflow as tf
__all__ = [
'GNNModel',
]
class GNNModel(object):
"""Base class for all Graph Neural Network (GNN) models."""
def __init__(self, features, graph_adj, targets):
"""Create a model.
Parameters
----------
graph_adj : sp.csr_matrix, shape [num_nodes, num_nodes]
Adjacency matrix in CSR format.
features : sp.csr_matrix or np.ndarray, shape [num_nodes, num_attr]
Attribute matrix in CSR or numpy format.
targets : np.ndarray, shape [num_nodes, num_classes]
One-hot matrix of node labels.
"""
self.targets = targets
self.graph_adj = self._preprocess_adj(graph_adj)
self.features = self._preprocess_features(features)
def _inference(self):
"""
Builds the inference graph of the model.
Returns
-------
logits : tf.Tensor, shape [num_nodes, num_classes]
The logits produced by the model (before feeding into softmax).
"""
raise NotImplementedError
def _predict(self):
"""
Computes predictions of the model on the targets given in the constructor.
Returns
-------
predictions : tf.Tensor, shape [num_nodes, num_classes]
Softmax probabilities for each node and each class.
"""
with tf.name_scope('predict'):
return tf.nn.softmax(self.inference)
def _loss(self):
"""
Computes the cross-entropy plus regularization loss of the model on the targets given in the constructor.
Returns
-------
loss : tf.Tensor, shape [], dtype tf.float32
A Tensor that, if evaluated, yields the model's loss on the targets given in the constructor.
"""
with tf.name_scope('loss'):
output = self.inference
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=self.targets)
)
regularization_losses = tf.losses.get_regularization_losses()
if not regularization_losses:
return loss
return loss + tf.add_n(regularization_losses)
def _build_model_graphs(self):
"""
Builds the graph portions for inference, prediction and loss computation and adds them as fields to the class.
Call this method as the last statement of your __init__.
"""
self.inference = self._inference()
self.predict = self._predict()
self.loss = self._loss()
def _preprocess_features(self, features):
"""
Preprocessing function for the features. Called by the constructor. Even if no preprocessing is needed, the
features might need to be converted to a tf.SparseTensor in this method using the function
util.to_sparse_tensor.
Returns
-------
features_tensor : tf.Tensor or tf.SparseTensor
The features as a (sparse) tensor.
"""
raise NotImplementedError
def _preprocess_adj(self, graph_adj):
"""
Preprocessing function for the adjacency matrix. Called by the constructor. Even if no preprocessing is needed,
the adjacency matrix might need to be converted to a tf.SparseTensor in this method using the function
util.to_sparse_tensor.
Returns
-------
graph_adj_tensor : tf.Tensor or tf.SparseTensor
The adjacency matrix as a (sparse) tensor.
"""
raise NotImplementedError
def optimize(self, learning_rate, global_step):
"""
Defines the optimizing operation for the model.
Parameters
----------
learning_rate : tf.Tensor, shape [], dtype tf.float32 or scalar
The initial learning rate for the optimizer.
global_step : tf.Variable, shape [], dtype tf.int32
The global step of the training process. Will be incremented by the optimizer.
Returns
-------
train_step : tf.Tensor
The optimiziation operation for one train step.
"""
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
return optimizer.minimize(self.loss, global_step=global_step)