-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathgcn.py
121 lines (102 loc) · 5.4 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import tensorflow as tf
import tensorflow.contrib.slim as slim
from sacred import Ingredient
from gnnbench.data.preprocess import row_normalize, renormalize_adj
from gnnbench.models.base_model import GNNModel
from gnnbench.util import dropout_supporting_sparse_tensors, to_sparse_tensor
# implementation verified against Kipf data
def graph_convolution(inputs, sparse_renormalized_laplacian, weights, input_is_sparse=False):
"""Implements the graph convolution operation  * inputs * weights, where
 is the renormalized Laplacian  = D~^-0.5 * A~ * D~^-0.5 with
A~ = A + I_N (adjacency matrix with added self-loops) and
D~ = diagonal matrix of node degrees deduced from A~.
"""
if input_is_sparse:
output = tf.sparse_tensor_dense_matmul(inputs, weights)
else:
output = tf.matmul(inputs, weights)
return tf.sparse_tensor_dense_matmul(sparse_renormalized_laplacian, output)
def graph_convolution_layer(output_dim,
inputs, sparse_renormalized_laplacian,
activation_fn,
dropout_prob,
weight_decay,
name,
input_is_sparse=False):
with tf.name_scope(name):
input_dim = int(inputs.get_shape()[1])
weights = tf.get_variable("%s-weights" % name, [input_dim, output_dim], dtype=tf.float32,
initializer=tf.glorot_uniform_initializer(),
regularizer=slim.l2_regularizer(weight_decay))
bias = tf.get_variable("%s-bias" % name, [output_dim], dtype=tf.float32,
initializer=tf.zeros_initializer())
# Apply dropout to inputs if required
inputs = tf.cond(
tf.cast(dropout_prob, tf.bool),
true_fn=(lambda: dropout_supporting_sparse_tensors(inputs, 1 - dropout_prob)),
false_fn=(lambda: inputs),
)
convolved = graph_convolution(inputs, sparse_renormalized_laplacian, weights,
input_is_sparse)
output = convolved + bias
if activation_fn is not None:
output = activation_fn(output)
return output
class GCN(GNNModel):
def __init__(self, features, graph_adj, targets, nodes_to_consider,
num_layers, hidden_size, dropout_prob, weight_decay, normalize_features):
self.normalize_features = normalize_features
with tf.name_scope('extract_relevant_nodes'):
targets = tf.gather(targets, nodes_to_consider)
super().__init__(features, graph_adj, targets)
self.nodes_to_consider = nodes_to_consider
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.weight_decay = weight_decay
self._build_model_graphs()
def _inference(self):
with tf.name_scope('inference'):
x = self.features
for i in range(0, self.num_layers - 1):
x = graph_convolution_layer(output_dim=self.hidden_size,
inputs=x,
sparse_renormalized_laplacian=self.graph_adj,
activation_fn=tf.nn.relu,
dropout_prob=self.dropout_prob,
# original implementation uses L2 regularization only on first layer
weight_decay=self.weight_decay if i == 0 else 0.0,
name="gc%d" % i,
input_is_sparse=i == 0)
output = graph_convolution_layer(output_dim=self.targets.shape[1],
inputs=x,
sparse_renormalized_laplacian=self.graph_adj,
activation_fn=None,
dropout_prob=self.dropout_prob,
weight_decay=0.0,
name="gc%d" % (self.num_layers - 1),
input_is_sparse=False)
with tf.name_scope('extract_relevant_nodes'):
return tf.gather(output, self.nodes_to_consider)
def _preprocess_features(self, features):
if self.normalize_features:
features = row_normalize(features)
return to_sparse_tensor(features)
def _preprocess_adj(self, graph_adj):
return to_sparse_tensor(renormalize_adj(graph_adj))
MODEL_INGREDIENT = Ingredient('model')
@MODEL_INGREDIENT.capture
def build_model(graph_adj, node_features, labels, dataset_indices_placeholder,
train_feed, trainval_feed, val_feed, test_feed,
weight_decay, normalize_features,
num_layers, hidden_size, dropout_prob):
dropout = tf.placeholder(dtype=tf.float32, shape=[])
train_feed[dropout] = dropout_prob
trainval_feed[dropout] = False
val_feed[dropout] = False
test_feed[dropout] = False
return GCN(node_features, graph_adj, labels, dataset_indices_placeholder,
num_layers=num_layers, hidden_size=hidden_size,
dropout_prob=dropout,
weight_decay=weight_decay,
normalize_features=normalize_features)