Given n
, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
题目:计算由1~n
这n
个数能构成的二叉查找树的个数。
思路:参考DP Solution in 6 lines with explanation. F(i, n) = G(i-1) * G(n-i)。先计算长度为i
的二叉查找树BST
的个数dp[i]
:不同的root
结点会有不同的BST
,假设根结点取j
,那么左子树由1...j-1
构成(长度j-1
),右子树由j+1...i
构成(长度i-j
);这里使用了一个技巧:只要长度相同,那么其对应的不同的BST
个数是相同的,即对于子树1,2,3
和4,5,6
长度均为3,那么它们所有的BST
个数是相同的。由此可以推导出状态转移方程:dp[i] += dp[j-1] * dp[i-j]
。
The tricky part is that we could consider the number of unique BST out of sequence [1,2] as G(2), and the number of of unique BST out of sequence [4, 5, 6, 7] as G(4).
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n+1);
//sequence of length 1 (only a root) or 0 (empty tree)
dp[0] = dp[1] = 1;
//不同长度
for(int i = 2; i<=n; ++i){
//不同的根结点
for(int j = 1; j <= i; ++j){
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
}
};