-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubmit_DIVAN.py
102 lines (90 loc) · 4.4 KB
/
submit_DIVAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# =========================================================================
# Copyright (C) 2024. FuxiCTR Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
import os
os.chdir(os.path.dirname(os.path.realpath(__file__)))
import logging
from fuxictr.utils import load_config, set_logger, print_to_json
from fuxictr.features import FeatureMap
from fuxictr.pytorch.dataloaders import RankDataLoader
from fuxictr.pytorch.torch_utils import seed_everything
from fuxictr.preprocess import FeatureProcessor, build_dataset
import src
import argparse
import os
import polars as pl
import shutil
def grank(x):
scores = x["score"].tolist()
tmp = [(i, s) for i, s in enumerate(scores)]
tmp = sorted(tmp, key=lambda y: y[-1], reverse=True)
rank = [(i + 1, t[0]) for i, t in enumerate(tmp)]
rank = [str(r[0]) for r in sorted(rank, key=lambda y: y[-1])]
rank = "[" + ",".join(rank) + "]"
return str(x["impression_id"].iloc[0]) + " " + rank
if __name__ == '__main__':
''' Usage: python submit.py --config {config_dir} --expid {experiment_id} --gpu {gpu_device_id}
'''
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default=f'./config/DIVAN_ebnerd_large_x1_tuner_config_01',
help='The config directory.')
parser.add_argument('--expid', type=str, default=f'DIVAN_ebnerd_demo_x1_001_b1afac3a',
help='The experiment id to run.')
parser.add_argument('--scores', type=str, default=f'divan', choices=['divan', 'din', 'vir'],
help='The scores to use. (divan, din or vir)')
parser.add_argument('--gpu', type=int, default=-1, help='The gpu index, -1 for cpu')
args = vars(parser.parse_args())
experiment_id = args['expid']
params = load_config(args['config'], experiment_id)
params['gpu'] = args['gpu']
test_csv = params["test_data"]
set_logger(params)
logging.info("Params: " + print_to_json(params))
seed_everything(seed=params['seed'])
data_dir = os.path.join(params['data_root'], params['dataset_id'])
feature_map_json = os.path.join(data_dir, "feature_map.json")
if params["data_format"] == "csv":
# Build feature_map and transform data
feature_encoder = FeatureProcessor(**params)
params["train_data"], params["valid_data"], params["test_data"] = \
build_dataset(feature_encoder, **params)
feature_map = FeatureMap(params['dataset_id'], data_dir)
feature_map.load(feature_map_json, params)
logging.info("Feature specs: " + print_to_json(feature_map.features))
model_class = getattr(src, params['model'])
model = model_class(feature_map, **params)
model.count_parameters() # print number of parameters used in model
model.to(device=model.device)
model.load_weights(model.checkpoint)
test_gen = RankDataLoader(feature_map, stage='test', **params).make_iterator()
ans = pl.scan_csv(test_csv)
ans = ans.select(['impression_id', 'user_id']).collect().to_pandas()
if args['scores'] == "divan":
logging.info("Predicting DIVAN scores...")
ans["score"] = model.predict(test_gen)
elif args['scores'] == "din":
logging.info("Predicting DIN scores...")
ans["score"] = model.predict_din(test_gen)
elif args['scores'] == "vir":
logging.info("Predicting Virality-Aware Click scores...")
ans["score"] = model.predict_vir(test_gen)
logging.info("Ranking samples...")
ans = ans.groupby(['impression_id', 'user_id'], sort=False).apply(grank).reset_index(drop=True)
logging.info("Writing results...")
os.makedirs("submit", exist_ok=True)
with open('submit/predictions.txt', "w") as fout:
fout.write("\n".join(ans.to_list()))
shutil.make_archive(f"submit/{experiment_id}_{args['scores']}", 'zip', 'submit/', 'predictions.txt')
logging.info("All done.")