-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt35_eval.py
53 lines (45 loc) · 1.67 KB
/
gpt35_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import time
from openai import OpenAI
client = OpenAI(api_key="INSERT_KEY")
from tqdm import tqdm
import tiktoken
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
SYSTEM_PROMPT = "You are a binary classifier. Your role is to predict whether the following statements are true or false. Answer with either true or false."
token_count = len(encoding.encode(SYSTEM_PROMPT))
def get_completion(prompt, model="gpt-3.5-turbo"):
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
],
temperature=0,
max_tokens=5,
)
return response.choices[0].message.content
curr_acc = 0
questions = []
responses = []
total_tokens = 0
data_neg = np.loadtxt("./test_pairs.txt", delimiter="\t", dtype=str)
data_neg_gt = np.loadtxt("./test_pairs_gt.txt", delimiter="\t", dtype=str)
with tqdm(total=len(data_neg)) as pbar:
for i, pair in enumerate(data_neg):
prompt = f"{pair[0]} is a kind of {pair[1]}"
response = get_completion(prompt)
print(prompt)
total_tokens = total_tokens + token_count + len(encoding.encode(prompt))
print(response)
curr_acc = curr_acc + ("true" in response.lower()) == ("1.0" in data_neg_gt[i])
questions.append(prompt)
responses.append(response)
pbar.update(1)
pbar.set_postfix(
curr_acc=str(curr_acc / (i+1)),
total_tokens=total_tokens
)
time.sleep(2)
with open("result.txt", "w") as output:
output.write(str(list(zip(questions, responses))))
print("Acc: ", curr_acc / (i+1))