-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_fewnerd.py
138 lines (110 loc) · 4.27 KB
/
run_fewnerd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from datasets import load_dataset
import os
from fet.data import process_sentence
import torch
from config import device
from ProntoLIN import ProntoLIN
from ProntoWS import ProntoWS
from ProntoMAV import ProntoMAV
from ProntoVF import ProntoVF
import tqdm
from pathlib import Path
import argparse
TEMPLATE = "In this sentence, [1] is [MASK] of [2]"
SPECIAL_TOKENS = None
def parse_arguments():
parser = argparse.ArgumentParser(description="Script Configuration")
parser.add_argument("--verbalizer_type", type=str, default="mav", choices=["mav", "vf", "lin", "ws"],
help="The name of the output model.")
parser.add_argument("--model_name", type=str, default="test_model",
help="The name of the saved verbalizer model (trained with run_model_train.py).")
parser.add_argument("--results_name", type=str, default="results",
help="The name of the experiment.")
parser.add_argument("--pretrained_model_name", type=str, default="FacebookAI/roberta-large",
help="The name of the pretrained model to use.")
parser.add_argument("--template_id", type=int, default=0,
help="The zero-indexed id of the prompt template to use.")
parser.add_argument("--experiment_type", type=str, default="coarse", choices=["coarse", "per", "loc", "org"],
help="The name of the output model.")
return parser.parse_args()
args = parse_arguments()
VERBALIZER_TYPE = args.verbalizer_type
RESULTS_NAME = args.results_name
MODEL_NAME = args.model_name
PRETRAINED_MODEL_NAME = args.pretrained_model_name # Huggingface pretrained model
TEMPLATE_ID = args.template_id
EXPERIMENT_TYPE = args.experiment_type
if VERBALIZER_TYPE == 'mav':
VERBALIZER_CLS = ProntoMAV
elif VERBALIZER_TYPE == 'vf':
VERBALIZER_CLS = ProntoVF
elif VERBALIZER_TYPE == 'ws':
VERBALIZER_CLS = ProntoWS
elif VERBALIZER_TYPE == 'lin':
VERBALIZER_CLS = ProntoLIN
model_parameters = {
"pretrained_model": PRETRAINED_MODEL_NAME,
"template": TEMPLATE,
"special_tokens": SPECIAL_TOKENS,
"init_token": None,
"noise_scaling": 0,
"l1_reg": 0,
}
MODEL_PATH = Path(f"models/{MODEL_NAME}/{MODEL_NAME}-t{TEMPLATE_ID}")
labels = []
labels_file = "coarse_labels.txt"
if EXPERIMENT_TYPE == "coarse":
labels_file = "coarse_labels.txt"
elif EXPERIMENT_TYPE == "loc":
labels_file = "labels_location.txt"
elif EXPERIMENT_TYPE == "per":
labels_file = "labels_person.txt"
elif EXPERIMENT_TYPE == "org":
labels_file = "labels_organization.txt"
with open(os.path.join("data", "few-nerd", labels_file)) as file:
for line in file:
labels.append(line.rstrip())
labels = dict(zip(list(range(1, len(labels) + 1)), labels))
dataset = load_dataset("DFKI-SLT/few-nerd", "supervised", split='test')
samples = []
if EXPERIMENT_TYPE == "coarse":
dataset_key = "ner_tags"
else:
dataset_key = "fine_ner_tags"
for i in range(len(dataset)):
samples.extend(
process_sentence(
dataset[i]['tokens'],
dataset[i][dataset_key],
neg_tag=0,
labels=labels
)
)
labels_no_other = [label for label in labels.values() if label != "other"]
model = VERBALIZER_CLS.load(
MODEL_PATH, **model_parameters).to(device)
model.eval()
curr_acc = 0
gt_labels = []
pred_labels = []
with tqdm.tqdm(total=len(samples)) as pbar:
for i, sample in enumerate(samples):
try:
with torch.no_grad():
pred = model(list(zip([sample[1][0]] * len(labels_no_other), labels_no_other)), prefixes=[sample[0] + " "] * len(labels_no_other))
if sample[1][1] == labels_no_other[torch.argmax(pred, dim=0).item()]:
curr_acc += 1
print(sample[0])
print(sample[1])
gt_labels.append(sample[1][1])
pred_labels.append(labels_no_other[torch.argmax(pred, dim=0).item()])
print("gt: ", sample[1][1])
print("pred: ", labels_no_other[torch.argmax(pred, dim=0).item()])
pbar.set_postfix(
acc=curr_acc / (i + 1) * 100
)
pbar.update(1)
except:
continue
with open(f"{RESULTS_NAME}-{MODEL_NAME}.txt", "w") as output:
output.write(str(list(zip(gt_labels, pred_labels))))