Skip to content

Latest commit

 

History

History
102 lines (89 loc) · 3.06 KB

README.md

File metadata and controls

102 lines (89 loc) · 3.06 KB

kinetics400

simple pytorch pipeline for pretraining/finetuning vision models on kinetics-400

data

download the kinetics-400 dataset from opendatalab dataset and arrange the data as follows
for more details, check data/

data/
├── Kinetics-400.tar.gz
├── preprocess.py
└── README.md

setup

apt install libgl1-mesa-glx
pip install -r requirements.txt

preprocess

unzip the kinetics-400 located in the data/

python -m data.preprocess

after preprocessing, the directory structure will be as follows

data/
├── Kinetics-400.tar.gz
├── preprocess.py
├── README.md
└── Kinetics-400
    ├── videos_train/
    ├── videos_val/
    ├── kinetics400_train_list_videos.txt
    └── kinetics400_val_list_videos.txt

supervised learning

classic supervised learning on kinetics-400 dataset

python -m train --save_dir weights \
                --model_name MCG-NJU/videomae-base-finetuned-kinetics \
                --pretrained \
                --pretrained_name MCG-NJU/videomae-base \
                --pretrained_dir pretrained_weights \
                --n_epoch 100 \
                --batch_size 32 \
                --lr 3e-4 \
                --n_worker 16 \
                --n_device 8 \
                --precision bf16-mixed \
                --dtype bfloat16 \
                --strategy ddp \
                --save_frequency 5 \
                --label_smoothing 0.1 \
                --input_size 224 

self-supervised learning

currently, only videomae is supported for self-supervised learning

python -m pretraining --save_dir pretrained_weights \
                      --model_name MCG-NJU/videomae-base \
                      --n_epoch 400 \
                      --batch_size 64 \
                      --lr 5e-4 \
                      --n_worker 16 \
                      --n_device 8 \
                      --precision bf16-mixed \
                      --dtype bfloat16 \
                      --strategy ddp \
                      --save_frequency 20 \
                      --input_size 224 \
                      --mask_ratio 0.9 \
                      --tubelet_size 2 \
                      --norm_pix_loss

results

  • original repo performs self-supervised training for 800 epochs, while this repo achieves similar performance in just 400 epochs

  • check results/

  • videomae_vit_base

    • it takes about 60 hours for pretraining using 8 x RTX 4090
    • it takes about 18 hours for finetuning using 8 x RTX 4090
metric top1_acc top5_acc
this repo 78.64 93.65
official repo 79.99 94.42

image

acknowledgement

this project makes use of the following libraries and models