-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathekf.c
381 lines (317 loc) · 12 KB
/
ekf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#include "ekf.h"
// 实验当地的重力加速度,通过经纬度可以查询得到
//float g0;
// 状态向量
matrix *x_61;
// DCM状态(最下面那行向量)方差,也就是陀螺测量噪音方差
//float q_dcm2;
// 陀螺仪偏差的方差
//float q_gyro_bias2;
// 加速度计测量噪音的方差
//float r_acc2;
// 加速度方差
//float r_a2;
matrix *a_31;
//float yaw;
//float pitch;
//float roll;
matrix *P_66;
matrix *H_36;
matrix *Q_66;
matrix *first_row_31;
matrix *Q_66_temp;
matrix *u;
matrix *c3x;
matrix *c3v;
matrix *ux;
matrix *temp3v;
matrix *c3x_temp;
matrix *A;
matrix *B;
matrix *F;
matrix *temp61;
matrix *x_predict;
matrix *P_predict;
matrix *F_transpose;
matrix *temp66;
matrix *z;
matrix *temp31;
matrix *a_predict;
matrix *y;
matrix *S;
matrix *H_transpose;
matrix *temp36;
matrix *S_inverse;
matrix *K;
matrix *R;
matrix *i33;
matrix *temp63;
matrix *x_last;
matrix *i66;
matrix *IKH;
matrix *IKH_transpose;
matrix *K_transpose;
matrix *J;
matrix *J_transpose;
matrix *u_nb;
matrix *X1;
matrix *X2;
matrix *ux_transpose;
matrix *c3x_transpose;
// DCM_IMU_uC(const float Gravity = DEFAULT_g0, const float *State = NULL, const float *Covariance = NULL,
// const float DCMVariance = DEFAULT_q_dcm2, const float BiasVariance = DEFAULT_q_gyro_bias2,
// const float InitialDCMVariance = DEFAULT_q_dcm2_init, const float InitialBiasVariance = DEFAULT_q_gyro_bias2_init,
// const float MeasurementVariance = DEFAULT_r_acc2, const float MeasurementVarianceVariableGain = DEFAULT_r_a2);
void DCM_IMU_uC_init_m(const float Gravity, const float *State, const float *Covariance,
const float DCMVariance, const float BiasVariance,
const float InitialDCMVariance, const float InitialBiasVariance,
const float MeasurementVariance, const float MeasurementVarianceVariableGain){
int i;
float temp[] = DEFAULT_state;
g0 = Gravity;
q_dcm2 = DCMVariance;
q_gyro_bias2 = BiasVariance;
r_acc2 = MeasurementVariance;
r_a2 = MeasurementVarianceVariableGain;
x_61 = matrix_init(6, 1);
a_31 = matrix_init(3, 1);
P_66 = matrix_init(6, 6);
H_36 = matrix_init(3, 6);
Q_66 = matrix_init(6, 6);
first_row_31 = matrix_init(3, 1);
for (i=0; i < 6; ++i) {
x_61->data[i] = temp[i];
}
matrix_write(P_66, 0, 0, InitialDCMVariance);
matrix_write(P_66, 1, 1, InitialDCMVariance);
matrix_write(P_66, 2, 2, InitialDCMVariance);
matrix_write(P_66, 3, 3, InitialBiasVariance);
matrix_write(P_66, 4, 4, InitialBiasVariance);
matrix_write(P_66, 5, 5, InitialBiasVariance);
matrix_write(H_36, 0, 0, g0);
matrix_write(H_36, 1, 1, g0);
matrix_write(H_36, 2, 2, g0);
matrix_write(Q_66, 0, 0, q_dcm2);
matrix_write(Q_66, 1, 1, q_dcm2);
matrix_write(Q_66, 2, 2, q_dcm2);
matrix_write(Q_66, 3, 3, q_gyro_bias2);
matrix_write(Q_66, 4, 4, q_gyro_bias2);
matrix_write(Q_66, 5, 5, q_gyro_bias2);
matrix_write(first_row_31, 0, 0, 1.0f);
matrix_write(first_row_31, 2, 0, 0.0f);
matrix_write(first_row_31, 3, 0, 0.0f);
yaw = 0.0f;
pitch = 0.0f;
roll = 0.0f;
Q_66_temp = matrix_init(6, 6);
u = matrix_init(3, 1);
c3x = matrix_init(3, 3);
c3v = matrix_init(3, 1);
ux = matrix_init(3, 3);
temp3v = matrix_init(3, 1);
c3x_temp = matrix_init(3, 3);
A = matrix_init(6, 6);
B = matrix_init(6, 3);
F = matrix_init(6, 6);
temp61 = matrix_init(6, 1);
x_predict = matrix_init(6, 1);
P_predict = matrix_init(6, 6);
F_transpose = matrix_init(6, 6);
temp66 = matrix_init(6, 6);
z = matrix_init(3, 1);
temp31 = matrix_init(3, 1);
a_predict = matrix_init(3, 1);
y = matrix_init(3, 1);
S = matrix_init(3, 3);
H_transpose = matrix_init(6, 3);
temp36 = matrix_init(3, 6);
S_inverse = matrix_init(3, 3);
K = matrix_init(6, 3);
R = matrix_init(3, 3);
i33 = matrix_create_identity(3);
temp63 = matrix_init(6, 3);
x_last = matrix_init(6, 1);
i66 = matrix_create_identity(6);
IKH = matrix_init(6, 6);
IKH_transpose = matrix_init(6, 6);
K_transpose = matrix_init(3, 6);
J = matrix_init(6, 6);
J_transpose = matrix_init(6, 6);
u_nb = matrix_init(3, 1);
X1 = matrix_init(3, 1);
X2 = matrix_init(3, 1);
ux_transpose = matrix_init(3, 3);
c3x_transpose = matrix_init(3, 3);
}
//! A method to perform update and give new measurements.
/*!
* This method is used regularly to update new gyroscope and accelerometer measurements into the system. To get best performance of the filter, please calibrate accelerometer and gyroscope readings before sending them into this method. The calibration process is documented in http://dx.doi.org/10.1155/2015/503814
* In addition, please measure the used sample period as accurately as possible for each iteration (delay between current and the last data which was used at the previous update)
* All parameters are in SI-units.
*
* @param Gyroscope an array of gyroscope measurements (the length is 3 floats, angular velocities around x, y and z axis).
* @param Accelerometer an array of accelerometer measurements (the length is 3 floats, accelerations in x, y and z axis).
* @param SamplePeriod A delay between this measurement and the previous measurement in seconds.
*/
void updateIMU_m(float *Gyroscope, float *Accelerometer, float SamplePeriod){
float a_len;
float d;
// Process noise covariance with time dependent noise
matrix_set_data(Q_66_temp, Q_66->data, 36);
matrix_multiply_scalar(Q_66_temp, SamplePeriod*SamplePeriod);
// Control input (angular velocities from gyroscopes)
matrix_set_data(u, Gyroscope, 3);
// "rotation operators"
matrix_write(c3v, 0, 0, x_61->data[0]);
matrix_write(c3v, 1, 0, x_61->data[1]);
matrix_write(c3v, 2, 0, x_61->data[2]);
vector3_to_skew_mat(c3v, c3x);
matrix_write(temp3v, 0, 0, (-1)*x_61->data[3]+u->data[0]);
matrix_write(temp3v, 1, 0, (-1)*x_61->data[4]+u->data[1]);
matrix_write(temp3v, 2, 0, (-1)*x_61->data[5]+u->data[2]);
vector3_to_skew_mat(temp3v, ux);
// Model generation
matrix_set_data(c3x_temp, c3x->data, 9);
matrix_multiply_scalar(c3x_temp, (-1)*SamplePeriod);
matrix_set_zero(A);
matrix_padding(A, c3x_temp, 0, 3, 1);
matrix_set_zero(B);
matrix_multiply_scalar(c3x_temp, -1);
matrix_padding(B, c3x_temp, 0, 0, 1);
matrix_set_zero(F);
matrix_multiply_scalar(c3x_temp, -1);
matrix_padding(F, c3x_temp, 0, 3, 1);
matrix_set_data(c3x_temp, ux->data, 9);
matrix_multiply_scalar(c3x_temp, (-1)*SamplePeriod);
matrix_padding(F, c3x_temp, 0, 0, 1);
matrix_add(F, i66, F);
// Kalman a priori prediction
matrix_multiply(A, x_61, temp61);
matrix_add(x_61, temp61, x_predict);
matrix_multiply(B, u, temp61);
matrix_add(x_predict, temp61, x_predict);
matrix_transpose(F, F_transpose);
matrix_multiply(F, P_66, P_predict);
matrix_multiply(P_predict, F_transpose, temp66);
matrix_add(temp66, Q_66_temp, P_predict);
// measurements/observations (acceleromeres)
matrix_set_data(z, Accelerometer, 3);
// recompute R using the error between acceleration and the model of g
// (estimate of the magnitude of a0 in a = a0 + g)
matrix_padding(x_predict, temp31, 0, 0, 0);
matrix_multiply_scalar(temp31, g0);
matrix_substract(z, temp31, a_predict);
a_len = sqrtf(a_predict->data[0]*a_predict->data[0]+a_predict->data[1]*a_predict->data[1]+a_predict->data[2]*a_predict->data[2]);
matrix_set_data(R, i33->data, 9);
matrix_multiply_scalar(R, a_len*r_a2+r_acc2);
// Kalman innovation
matrix_multiply(H_36, x_predict, y);
matrix_substract(z, y, y);
matrix_transpose(H_36, H_transpose);
matrix_multiply(H_36, P_predict, temp36);
matrix_multiply(temp36, H_transpose, S);
matrix_add(S, R, S);
// Kalman gain
matrix_inverse_gauss(S, S_inverse);
matrix_multiply(P_predict, H_transpose, temp63);
matrix_multiply(temp63, S_inverse, K);
matrix_set_data(x_last, x_61->data, 6);
// printf_matrix(x_61);
// 后验校正
matrix_multiply(K, y, temp61);
matrix_add(temp61, x_predict, x_61);
// 更新后验校正后的协方差
matrix_multiply(K, H_36, temp66);
matrix_substract(i66, temp66, IKH);
matrix_transpose(IKH, IKH_transpose);
matrix_multiply(IKH, P_predict, temp66);
matrix_multiply(temp66, IKH_transpose, P_66);
matrix_multiply(K, R, temp63);
matrix_transpose(K, K_transpose);
matrix_multiply(temp63, K_transpose, temp66);
matrix_add(P_66, temp66, P_66);
// normalization of x & P (divide by DCM vector length)
d = sqrtf(x_61->data[0]*x_61->data[0]+x_61->data[1]*x_61->data[1]+x_61->data[2]*x_61->data[2]);
matrix_set_data(J, i66->data, 36);
matrix_write(J, 0, 0, (x_61->data[1]*x_61->data[1]+x_61->data[2]*x_61->data[2])/(d*d*d));
matrix_write(J, 0, 1, ((-1)*x_61->data[0]*x_61->data[1])/(d*d*d));
matrix_write(J, 0, 2, ((-1)*x_61->data[0]*x_61->data[2])/(d*d*d));
matrix_write(J, 1, 0, ((-1)*x_61->data[0]*x_61->data[1])/(d*d*d));
matrix_write(J, 1, 1, (x_61->data[0]*x_61->data[0]+x_61->data[2]*x_61->data[2])/(d*d*d));
matrix_write(J, 1, 2, ((-1)*x_61->data[1]*x_61->data[2])/(d*d*d));
matrix_write(J, 2, 0, ((-1)*x_61->data[0]*x_61->data[2])/(d*d*d));
matrix_write(J, 2, 1, ((-1)*x_61->data[1]*x_61->data[2])/(d*d*d));
matrix_write(J, 2, 2, (x_61->data[0]*x_61->data[0]+x_61->data[1]*x_61->data[1])/(d*d*d));
// Laplace approximation of normalization function for x to P, J = Jacobian(f,x)
matrix_transpose(J, J_transpose);
matrix_multiply(J, P_66, temp66);
matrix_multiply(temp66, J_transpose, P_66);
matrix_padding(x_61, temp31, 0, 0, 0);
matrix_multiply_scalar(temp31, 1/d);
matrix_padding(x_61, temp31, 0, 0, 1);
// compute Euler angles (not exactly a part of the extended Kalman filter)
// yaw integration through full rotation matrix
matrix_padding(x_61, temp31, 3, 0, 0);
matrix_substract(u, temp31, u_nb);
//alternative method estimating the whole rotation matrix
//integrate full rotation matrix (using first row estimate in memory)
matrix_set_zero(X1);
matrix_set_zero(X2);
matrix_transpose(ux, ux_transpose);
matrix_multiply(ux_transpose, first_row_31, X1);
matrix_multiply_scalar(X1, SamplePeriod);
matrix_add(first_row_31, X1, X1);
matrix_multiply(c3x, X1, X2);
matrix_multiply_scalar(X2, 1/sqrtf(X2->data[0]*X2->data[0]+X2->data[1]*X2->data[1]+X2->data[2]*X2->data[2]));
matrix_transpose(c3x, c3x_transpose);
matrix_multiply(c3x_transpose, X2, X1);
matrix_set_data(temp31, X1->data, 3);
matrix_multiply_scalar(temp31, 1/sqrtf(X1->data[0]*X1->data[0]+X1->data[1]*X1->data[1]+X1->data[2]*X1->data[2]));
matrix_set_data(first_row_31, temp31->data, 3);
yaw = atan2(X2->data[0], first_row_31->data[0]);
yaw = yaw;
// printf("\r\nX2->data[0]:%f", X2->data[0]);
// printf("\r\nfirst_row_31->data[0]:%f", first_row_31->data[0]);
pitch = asin((-1)*x_61->data[0]);
roll = atan2(x_61->data[1], x_61->data[2]);
// printf_matrix(x_61);
}
//! A method to query State.
/*!
* @param State a 6 units long float array where the current state is stored.
*/
void getState_m(float *State){
}
//! A method to query Covariance.
/*!
* @param Covariance a 36 units long float array where the current covariance is stored in row-major order.
*/
void getCovariance_m(float *Covariance){
}
//! A method to query non-gravitational acceleration.
/*!
* @param a a 3 units long float array where the current non-gravitational acceleration is stored (x, y, and z axis).
*/
void getNGAcc_m(float *a){
}
//! A method to return the yaw angle.
/*!
* @return The yaw angle.
*/
float getYaw_m(void){
return yaw;
}
//! A method to return the pitch angle.
/*!
* @return The pitch angle.
*/
float getPitch_m(void){
return pitch;
}
//! A method to return the roll angle.
/*!
* @return The roll angle.
*/
float getRoll_m(void){
return roll;
}