Skip to content

Latest commit

 

History

History
94 lines (65 loc) · 2.82 KB

README.md

File metadata and controls

94 lines (65 loc) · 2.82 KB

Session-aware BERT4Rec

Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Everything in the paper is implemented (including vanilla BERT4Rec and SASRec), and can be reproduced.

Usage

1. Build Docker

./scripts/build.sh

2. Download dataset

Download corresponding datasets into some directory, such as ./roughs.

For Steam dataset, use version 2.

Rename datasets: 'ml1m' for MovieLens-1M, 'ml20m' for MovieLens-2M, 'steam2' for Steam.

3. Preprocess

  • --rough_root: for original dataset files
  • --data_root: for processed data files
python preprocess.py prepare ml1m --data_root ./data --rough_root ./roughs
python preprocess.py prepare ml20m --data_root ./data --rough_root ./roughs
python preprocess.py prepare steam2 --data_root ./data --rough_root ./roughs

For some stats:

python preprocess.py count stats --data_root ./data --rough_root ./roughs > dstats.tsv

4. Run

See default configuration setting in entry.py.

To modify configuration, make some directory under runs/ like ./runs/ml1m/bert4rec/vanilla/, and create config.json.

Sample Run Script

My x0.sh file that uses GPU No. 0:

runpy () {
    docker run \
        -it \
        --rm \
        --init \
        --gpus '"device=0"' \
        --shm-size 16G \
        --volume="$HOME/.cache/torch:/root/.cache/torch" \
        --volume="$PWD:/workspace" \
        session-aware-bert4rec \
        python "$@"
}

runpy entry.py ml1m/bert4rec/vanilla

Terminologies

The df_ prefix always means DataFrame from Pandas.

  • uid (str|int): User ID (unique).
  • iid (str|int): Item ID (unique).
  • sid (str|int): Session ID (unique), used only for session separation.
  • uindex (int): mapped index number of User ID, 1 ~ n.
  • iindex (int): mapped index number of Item ID, 1 ~ m.
  • timestamp (int): UNIX timestamp.

Data Files

After preprocessing, we'll have followings in each data/:dataset_name/ directory.

  • uid2uindex.pkl (dict): {uiduindex}.
  • iid2iindex.pkl (dict): {iidiindex}.
  • df_rows.pkl (df): column of (uindex, iindex, sid, timestamp), with no index.
  • train.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • valid.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • test.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • ns_random.pkl (dict): {uindex -> [list of iindex]}.
  • ns_popular.pkl (dict): {uindex -> [list of iindex]}.

Code References