-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_search.py
200 lines (165 loc) · 7.58 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from fastai import *
from fastai.text import *
from train import DartsCell, DartsRnn
from copy import deepcopy as dc
import copy
from darts_callbacks import Genotype
STEPS = 8
CONCAT = 8
edges_cnt = sum(i for i in range(1, STEPS+1))
PRIMITIVES = [
'none',
'tanh',
'relu',
'sigmoid',
'identity'
]
class DartsCellSearch(DartsCell):
def __init__(self, ninp, nhid,
dropouth, dropoutx, initrange):
super(DartsCellSearch, self).__init__(ninp, nhid, dropouth,
dropoutx, initrange, genotype=None)
self.arch_p = torch.rand((edges_cnt, len(PRIMITIVES)), device="cuda").mul_(1e-3)
self.arch_p.requires_grad = True
self.bn = nn.BatchNorm1d(nhid, affine=False)
def cell(self, x, h_prev, x_mask, h_mask):
s0 = self._compute_init_state(x, h_prev, x_mask, h_mask)
s0 = self.bn(s0)
probs = F.softmax(self.arch_p, dim=-1)
offset = 0
states = s0.unsqueeze(0)
for i in range(STEPS):
if self.training:
masked_states = states * h_mask.unsqueeze(0)
else:
masked_states = states
ch = masked_states.view(-1, self.nhid).mm(self._Ws[i]).view(i+1, -1, 2*self.nhid)
c, h = torch.split(ch, self.nhid, dim=-1)
c = c.sigmoid()
s = torch.zeros_like(s0)
for k, name in enumerate(PRIMITIVES):
if name == 'none': continue
fn = self._get_activation(name)
unweighted = states + c * (fn(h) - states)
s += torch.sum(probs[offset:offset+i+1, k].unsqueeze(-1).unsqueeze(-1) * unweighted, dim=0)
s = self.bn(s)
states = torch.cat([states, s.unsqueeze(0)], 0)
offset += i+1
cell_out = torch.mean(states[-CONCAT:], dim=0)
return cell_out
class DartsRnnSearch(DartsRnn):
def __init__(self, emb_sz, vocab_sz,
ninp, nhid,
dropout,
dropouth, dropoutx,
dropouti, dropoute,
bs_train, bs_val, bs_test=1):
super(DartsRnnSearch, self).__init__(emb_sz, vocab_sz,
ninp, nhid,
dropout,
dropouth, dropoutx,
dropouti, dropoute,
bs_train, bs_val, bs_test,
cell_cls=DartsCellSearch,
genotype=None)
def genotype_parse(self):
def _parse(probs):
gene = []
start = 0
for i in range(STEPS):
end = start + i + 1
W = probs[start:end].copy()
j = sorted(range(i + 1), key=lambda x: -max(W[x][k] for k in range(len(W[x])) \
if k != PRIMITIVES.index('none')))[0]
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j))
start = end
return gene
with torch.no_grad():
gene = _parse(F.softmax(self.rnn.arch_p, dim=-1).cpu().numpy())
genotype = Genotype(recurrent=gene, concat=range(STEPS+1)[-CONCAT:])
return genotype
class ArchParamUpdate(LearnerCallback):
def __init__(self, learn:Learner, search_dat,
arch_lr, arch_wdecay, wdecay):
super().__init__(learn)
self.wdecay = wdecay
self.search_dat = search_dat
self.len_sd = len(search_dat)
self.cnt = 0
self.epsilon = 0.
self.arch_opt = torch.optim.Adam([self.learn.model.rnn.arch_p],
lr=arch_lr, weight_decay=arch_wdecay)
self.par = self.learn.model.parameters
def clip_norm(self, inp, clip=0.25):
total_norm = 0
for g in inp:
param_norm = g.norm(2)
total_norm += param_norm ** 2
total_norm = total_norm ** 0.5
clip_coef = clip/ (total_norm + 1e-6)
if clip_coef < 1:
for g in inp:
g.mul_(clip_coef)
return clip_coef
def on_batch_begin(self, last_input, last_target, **kwargs):
if self.learn.model.training:
original_hid = dc(self.learn.model.hid.detach())
original_model_dict = dc(self.learn.model.state_dict())
loss = self._loss(last_input, last_target)
unrolled_grads = torch.autograd.grad(loss, self.par())
clip_coef = self.clip_norm(unrolled_grads)
with torch.no_grad():
for p, v in zip(self.par(), unrolled_grads):
v.add_(self.wdecay, p)
p.sub_(self.learn.opt.lr, v)
if self.cnt >= self.len_sd: self.cnt = 0
x_search, y_search = self.search_dat[self.cnt]
self.cnt += 1
self.learn.model.hid = dc(original_hid)
loss = self._loss(x_search, y_search, hid_search=True)
loss.backward()
dalpha = dc(self.learn.model.rnn.arch_p.grad) # first part of equation 6
w_prime_grad = dc([v.grad for v in self.par()]) # save for w+, w-
_ = self.clip_norm(w_prime_grad)
self.learn.opt.zero_grad()
self.arch_opt.zero_grad()
self.epsilon = 1e-2 / torch.cat([x.view(-1) for x in w_prime_grad]).norm()
self.learn.model.load_state_dict(original_model_dict)
implicit_grads = self.impl(w_prime_grad, original_hid, last_input, last_target)
self.learn.model.rnn.arch_p.grad = dalpha - self.learn.opt.lr * clip_coef * implicit_grads
self.arch_opt.step()
self.arch_opt.zero_grad()
self.learn.opt.zero_grad()
self.learn.model.hid = dc(original_hid)
return
def impl(self, w_prime_grad, original_hid, last_input, last_target):
with torch.no_grad():
for p, v in zip(self.par(), w_prime_grad):
p.add_(self.epsilon, v) # w+
self.learn.model.hid = dc(original_hid)
loss = self._loss(last_input, last_target)
w_plus_grad = torch.autograd.grad(loss, self.learn.model.rnn.arch_p)[0]
with torch.no_grad():
for p, v in zip(self.par(), w_prime_grad):
p.sub_(2*self.epsilon, v) # w-
self.learn.model.hid = dc(original_hid)
loss = self._loss(last_input, last_target)
w_minus_grad = torch.autograd.grad(loss, self.learn.model.rnn.arch_p)[0]
with torch.no_grad():
for p, v in zip(self.par(), w_prime_grad):
p.add_(self.epsilon, v) # revert back to original
implicit_grads = (w_plus_grad - w_minus_grad)/(2*self.epsilon)
return implicit_grads
def _loss(self, inp, target, hid_search=False):
return self.learn.loss_func(self.learn.model(inp,
details = False,
hid_search=hid_search), target)
class PrintGenotype(LearnerCallback):
def on_epoch_end(self, **kwargs):
print(self.learn.model.genotype_parse())
return