-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathsptam.py
executable file
·303 lines (220 loc) · 9.04 KB
/
sptam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import numpy as np
import time
from itertools import chain
from collections import defaultdict
from covisibility import CovisibilityGraph
from optimization import BundleAdjustment
from mapping import Mapping
from mapping import MappingThread
from components import Measurement
from motion import MotionModel
from loopclosing import LoopClosing
class Tracking(object):
def __init__(self, params):
self.optimizer = BundleAdjustment()
self.min_measurements = params.pnp_min_measurements
self.max_iterations = params.pnp_max_iterations
def refine_pose(self, pose, cam, measurements):
assert len(measurements) >= self.min_measurements, (
'Not enough points')
self.optimizer.clear()
self.optimizer.add_pose(0, pose, cam, fixed=False)
for i, m in enumerate(measurements):
self.optimizer.add_point(i, m.mappoint.position, fixed=True)
self.optimizer.add_edge(0, i, 0, m)
self.optimizer.optimize(self.max_iterations)
return self.optimizer.get_pose(0)
class SPTAM(object):
def __init__(self, params):
self.params = params
self.tracker = Tracking(params)
self.motion_model = MotionModel()
self.graph = CovisibilityGraph()
self.mapping = MappingThread(self.graph, params)
self.loop_closing = LoopClosing(self, params)
self.loop_correction = None
self.reference = None # reference keyframe
self.preceding = None # last keyframe
self.current = None # current frame
self.status = defaultdict(bool)
def stop(self):
self.mapping.stop()
if self.loop_closing is not None:
self.loop_closing.stop()
def initialize(self, frame):
mappoints, measurements = frame.triangulate()
assert len(mappoints) >= self.params.init_min_points, (
'Not enough points to initialize map.')
keyframe = frame.to_keyframe()
keyframe.set_fixed(True)
self.graph.add_keyframe(keyframe)
self.mapping.add_measurements(keyframe, mappoints, measurements)
if self.loop_closing is not None:
self.loop_closing.add_keyframe(keyframe)
self.reference = keyframe
self.preceding = keyframe
self.current = keyframe
self.status['initialized'] = True
self.motion_model.update_pose(
frame.timestamp, frame.position, frame.orientation)
def track(self, frame):
while self.is_paused():
time.sleep(1e-4)
self.set_tracking(True)
self.current = frame
print('Tracking:', frame.idx, ' <- ', self.reference.id, self.reference.idx)
predicted_pose, _ = self.motion_model.predict_pose(frame.timestamp)
frame.update_pose(predicted_pose)
if self.loop_closing is not None:
if self.loop_correction is not None:
estimated_pose = g2o.Isometry3d(
frame.orientation,
frame.position)
estimated_pose = estimated_pose * self.loop_correction
frame.update_pose(estimated_pose)
self.motion_model.apply_correction(self.loop_correction)
self.loop_correction = None
local_mappoints = self.filter_points(frame)
measurements = frame.match_mappoints(
local_mappoints, Measurement.Source.TRACKING)
print('measurements:', len(measurements), ' ', len(local_mappoints))
tracked_map = set()
for m in measurements:
mappoint = m.mappoint
mappoint.update_descriptor(m.get_descriptor())
mappoint.increase_measurement_count()
tracked_map.add(mappoint)
try:
self.reference = self.graph.get_reference_frame(tracked_map)
pose = self.tracker.refine_pose(frame.pose, frame.cam, measurements)
frame.update_pose(pose)
self.motion_model.update_pose(
frame.timestamp, pose.position(), pose.orientation())
tracking_is_ok = True
except:
tracking_is_ok = False
print('tracking failed!!!')
if tracking_is_ok and self.should_be_keyframe(frame, measurements):
print('new keyframe', frame.idx)
keyframe = frame.to_keyframe()
keyframe.update_reference(self.reference)
keyframe.update_preceding(self.preceding)
self.mapping.add_keyframe(keyframe, measurements)
if self.loop_closing is not None:
self.loop_closing.add_keyframe(keyframe)
self.preceding = keyframe
self.set_tracking(False)
def filter_points(self, frame):
local_mappoints = self.graph.get_local_map_v2(
[self.preceding, self.reference])[0]
can_view = frame.can_view(local_mappoints)
print('filter points:', len(local_mappoints), can_view.sum(),
len(self.preceding.mappoints()),
len(self.reference.mappoints()))
checked = set()
filtered = []
for i in np.where(can_view)[0]:
pt = local_mappoints[i]
if pt.is_bad():
continue
pt.increase_projection_count()
filtered.append(pt)
checked.add(pt)
for reference in set([self.preceding, self.reference]):
for pt in reference.mappoints(): # neglect can_view test
if pt in checked or pt.is_bad():
continue
pt.increase_projection_count()
filtered.append(pt)
return filtered
def should_be_keyframe(self, frame, measurements):
if self.adding_keyframes_stopped():
return False
n_matches = len(measurements)
n_matches_ref = len(self.reference.measurements())
print('keyframe check:', n_matches, ' ', n_matches_ref)
return ((n_matches / n_matches_ref) <
self.params.min_tracked_points_ratio) or n_matches < 20
def set_loop_correction(self, T):
self.loop_correction = T
def is_initialized(self):
return self.status['initialized']
def pause(self):
self.status['paused'] = True
def unpause(self):
self.status['paused'] = False
def is_paused(self):
return self.status['paused']
def is_tracking(self):
return self.status['tracking']
def set_tracking(self, status):
self.status['tracking'] = status
def stop_adding_keyframes(self):
self.status['adding_keyframes_stopped'] = True
def resume_adding_keyframes(self):
self.status['adding_keyframes_stopped'] = False
def adding_keyframes_stopped(self):
return self.status['adding_keyframes_stopped']
if __name__ == '__main__':
import cv2
import g2o
import os
import sys
import argparse
from threading import Thread
from components import Camera
from components import StereoFrame
from feature import ImageFeature
from params import ParamsKITTI, ParamsEuroc
from dataset import KITTIOdometry, EuRoCDataset
parser = argparse.ArgumentParser()
parser.add_argument('--no-viz', action='store_true', help='do not visualize')
parser.add_argument('--dataset', type=str, help='dataset (KITTI/EuRoC)',
default='KITTI')
parser.add_argument('--path', type=str, help='dataset path',
default='path/to/your/KITTI_odometry/sequences/00')
args = parser.parse_args()
if args.dataset.lower() == 'kitti':
params = ParamsKITTI()
dataset = KITTIOdometry(args.path)
elif args.dataset.lower() == 'euroc':
params = ParamsEuroc()
dataset = EuRoCDataset(args.path)
sptam = SPTAM(params)
visualize = not args.no_viz
if visualize:
from viewer import MapViewer
viewer = MapViewer(sptam, params)
cam = Camera(
dataset.cam.fx, dataset.cam.fy, dataset.cam.cx, dataset.cam.cy,
dataset.cam.width, dataset.cam.height,
params.frustum_near, params.frustum_far,
dataset.cam.baseline)
durations = []
for i in range(len(dataset))[:100]:
featurel = ImageFeature(dataset.left[i], params)
featurer = ImageFeature(dataset.right[i], params)
timestamp = dataset.timestamps[i]
time_start = time.time()
t = Thread(target=featurer.extract)
t.start()
featurel.extract()
t.join()
frame = StereoFrame(i, g2o.Isometry3d(), featurel, featurer, cam, timestamp=timestamp)
if not sptam.is_initialized():
sptam.initialize(frame)
else:
sptam.track(frame)
duration = time.time() - time_start
durations.append(duration)
print('duration', duration)
print()
print()
if visualize:
viewer.update()
print('num frames', len(durations))
print('num keyframes', len(sptam.graph.keyframes()))
print('average time', np.mean(durations))
sptam.stop()
if visualize:
viewer.stop()