-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathexample_loader.lua
125 lines (101 loc) · 5 KB
/
example_loader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
local ExampleLoader, parent = torch.class('ExampleLoader')
function ExampleLoader:__init(dataset, normalization_params, scales, example_loader_opts)
self.scales = scales
self.normalization_params = normalization_params
self.example_loader_opts = example_loader_opts
self.dataset = dataset
end
local function table2d(I, J, elem_generator)
local res = {}
for i = 1, I do
res[i] = {}
for j = 1, J do
res[i][j] = elem_generator(i, j)
end
end
return res
end
local function subtract_mean(dst, src, normalization_params)
local channel_order = assert(({rgb = {1, 2, 3}, bgr = {3, 2, 1}})[normalization_params.channel_order])
for c = 1, 3 do
dst[c]:copy(src[channel_order[c]]):add(-normalization_params.rgb_mean[channel_order[c]])
if normalization_params.rgb_std then
dst[c]:div(normalization_params.rgb_std[channel_order[c]])
end
end
end
local function rescale(img, max_height, max_width)
--local height_width = math.max(dhw_rgb:size(3), dhw_rgb:size(2))
--local im_scale = target_height_width / height_width
local scale_factor = max_height / img:size(2)
if torch.round(img:size(3) * scale_factor) > max_width then
scale_factor = math.min(scale_factor, max_width / img:size(3))
end
return image.scale(img, math.min(max_width, img:size(3) * scale_factor), math.min(max_height, img:size(2) * scale_factor))
end
local function flip(images_j, rois_j)
image.hflip(images_j, images_j)
rois_j:select(2, 1):mul(-1):add(images_j:size(3))
rois_j:select(2, 3):mul(-1):add(images_j:size(3))
local tmp = rois_j:select(2, 1):clone()
rois_j:select(2, 1):copy(rois_j:select(2, 3))
rois_j:select(2, 3):copy(tmp)
end
local function insert_dummy_dim1(...)
for _, tensor in ipairs({...}) do
tensor:resize(1, unpack(tensor:size():totable()))
end
end
function ExampleLoader:makeBatchTable(batchSize, isTrainingPhase)
local o = self:getPhaseOpts(isTrainingPhase)
local num_jittered_copies = isTrainingPhase and 2 or (1 + (o.hflips and 2 or 1) * o.numScales)
return table2d(batchSize, num_jittered_copies, function() return {torch.FloatTensor(), torch.FloatTensor(), torch.FloatTensor()} end)
end
function ExampleLoader:loadExample(exampleIdx, isTrainingPhase)
local o = self:getPhaseOpts(isTrainingPhase)
local labels_loaded = self.dataset[o.subset]:getLabels(exampleIdx)
local rois_loaded = self.dataset[o.subset]:getProposals(exampleIdx)
local jpeg_loaded = self.dataset[o.subset]:getJpegBytes(exampleIdx)
local scales = o.scales or self.scales
local normalization_params = self.normalization_params
local scale_inds = isTrainingPhase and {0, torch.random(1, o.numScales)} or torch.range(0, o.numScales):totable()
local hflips = isTrainingPhase and (o.hflips and torch.random(0, 1) or 0) or (o.hflips and 2 or 0) -- 0 is no_flip, 1 is do_flip, 2 is both
local rois_perm = isTrainingPhase and torch.randperm(rois_loaded:size(1)) or torch.range(1, rois_loaded:size(1))
return function(indexInBatch, batchTable)
image = image or require 'image'
local img_original = image.decompressJPG(jpeg_loaded, 3, normalization_params.scale == 255 and 'byte' or 'float')
local height_original, width_original = img_original:size(2), img_original:size(3)
local rois_scale0 = rois_loaded:index(1, rois_perm:sub(1, math.min(rois_loaded:size(1), o.numRoisPerImage)):long())
rois_scale0[1]:copy(torch.FloatTensor{0, 0, width_original - 1, height_original - 1, 0.0}:sub(1, rois_scale0:size(2)))
for j, scale_ind in ipairs(scale_inds) do
local images, rois, labels = unpack(batchTable[indexInBatch][j])
local img_scaled = scale_ind == 0 and img_original:clone() or rescale(img_original, scales[scale_ind][1], scales[scale_ind][2])
local width_scaled, height_scaled = img_scaled:size(3), img_scaled:size(2)
subtract_mean(images:resize(img_scaled:size()), img_scaled, normalization_params)
rois:cmul(rois_scale0, torch.FloatTensor{{width_scaled / width_original, height_scaled / height_original, width_scaled / width_original, height_scaled / height_original, 1.0}}:narrow(2, 1, rois_scale0:size(2)):contiguous():expandAs(rois_scale0))
labels:resize(labels_loaded:size()):copy(labels_loaded)
if hflips == 1 then
flip(images, rois)
elseif scale_ind ~= 0 and hflips == 2 then
local jj = #batchTable[indexInBatch] - j + 2
local images_flipped, rois_flipped, labels_flipped = unpack(batchTable[indexInBatch][jj])
images_flipped:resizeAs(images):copy(images)
rois_flipped:resizeAs(rois):copy(rois)
labels_flipped:resizeAs(labels):copy(labels)
flip(images_flipped, rois_flipped)
insert_dummy_dim1(images_flipped, rois_flipped, labels_flipped)
end
insert_dummy_dim1(images, rois, labels)
end
collectgarbage()
end
end
function ExampleLoader:getNumExamples(isTrainingPhase)
return self.dataset[self:getSubset(isTrainingPhase)]:getNumExamples()
end
function ExampleLoader:getPhaseOpts(isTrainingPhase)
return isTrainingPhase and self.example_loader_opts['training'] or self.example_loader_opts['evaluate']
end
function ExampleLoader:getSubset(isTrainingPhase)
return self:getPhaseOpts(isTrainingPhase).subset
end