-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel.py
117 lines (96 loc) · 5.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
import torch.nn.functional as F
def topk_mask(input, dim, K = 10, **kwargs):
index = input.topk(max(1, min(K, input.size(dim))), dim = dim, **kwargs)[1]
return torch.zeros_like(input).scatter(dim, index, 1.0)
def pdist(A, squared = False, eps = 1e-4):
prod = torch.mm(A, A.t())
norm = prod.diag().unsqueeze(1).expand_as(prod)
res = (norm + norm.t() - 2 * prod).clamp(min = 0)
return res if squared else res.clamp(min = eps).sqrt()
class Model(nn.Module):
def __init__(self, base_model, num_classes, embedding_size = 128):
super(Model, self).__init__()
self.base_model = base_model
self.num_classes = num_classes
self.embedder = nn.Linear(base_model.output_size, embedding_size)
def forward(self, input):
return self.embedder(F.relu(self.base_model(input).view(len(input), -1)))
criterion = None
optimizer = torch.optim.SGD
optimizer_params = dict(lr = 1e-4, momentum = 0.9, weight_decay = 2e-4)
lr_scheduler_params = dict(step_size = float('inf'), gamma = 0.1)
class Untrained(Model):
def forward(self, input):
return self.base_model(input).view(input.size(0), -1).detach()
class LiftedStruct(Model):
def criterion(self, embeddings, labels, margin = 1.0, eps = 1e-4):
d = pdist(embeddings, squared = False, eps = eps)
pos = torch.eq(*[labels.unsqueeze(dim).expand_as(d) for dim in [0, 1]]).type_as(d)
neg_i = torch.mul((margin - d).exp(), 1 - pos).sum(1).expand_as(d)
return torch.sum(F.relu(pos.triu(1) * ((neg_i + neg_i.t()).log() + d)).pow(2)) / (pos.sum() - len(d))
class Triplet(Model):
def criterion(self, embeddings, labels, margin = 1.0):
d = pdist(embeddings)
pos = torch.eq(*[labels.unsqueeze(dim).expand_as(d) for dim in [0, 1]]).type_as(d) - torch.autograd.Variable(torch.eye(len(d))).type_as(d)
T = d.unsqueeze(1).expand(*(len(d),) * 3)
M = pos.unsqueeze(1).expand_as(T) * (1 - pos.unsqueeze(2).expand_as(T))
return (M * F.relu(T - T.transpose(1, 2) + margin)).sum() / M.sum()
optimizer_params = dict(lr = 1e-4, momentum = 0.9, weight_decay = 5e-4)
lr_scheduler_params = dict(step_size = 30, gamma = 0.5)
class TripletRatio(Model):
def criterion(self, embeddings, labels, margin = 0.1, eps = 1e-4):
d = pdist(embeddings, squared = False, eps = eps)
pos = torch.eq(*[labels.unsqueeze(dim).expand_as(d) for dim in [0, 1]]).type_as(d)
T = d.unsqueeze(1).expand(*(len(d),) * 3)
M = pos.unsqueeze(1).expand_as(T) * (1 - pos.unsqueeze(2).expand_as(T))
return (M * T.div(T.transpose(1, 2) + margin)).sum() / M.sum()
class Pddm(Model):
def __init__(self, base_model, num_classes, d = 1024):
nn.Module.__init__(self)
self.base_model = base_model
#self.embedder = nn.Linear(base_model.output_size, d)
self.embedder = lambda x: x #nn.Linear(base_model.output_size, d)
self.wu = nn.Linear(d, d)
self.wv = nn.Linear(d, d)
self.wc = nn.Linear(2 * d, d)
self.ws = nn.Linear(d, 1)
def forward(self, input):
return F.normalize(Model.forward(self, input))
def criterion(self, embeddings, labels, Alpha = 0.5, Beta = 1.0, Lambda = 0.5):
#embeddings = embeddings * topk_mask(embeddings, dim = 1, K = 512)
d = pdist(embeddings, squared = True)
pos = torch.eq(*[labels.unsqueeze(dim).expand_as(d) for dim in [0, 1]]).type_as(embeddings) - torch.autograd.Variable(torch.eye(len(d))).type_as(embeddings)
f1, f2 = [embeddings.unsqueeze(dim).expand(len(embeddings), *embeddings.size()) for dim in [0, 1]]
u = (f1 - f2).abs()
v = (f1 + f2) / 2
u_ = F.normalize(F.relu(F.dropout(self.wu(u.view(-1, u.size(-1))), training = self.training)))
v_ = F.normalize(F.relu(F.dropout(self.wv(v.view(-1, v.size(-1))), training = self.training)))
s = self.ws(F.relu(F.dropout(self.wc(torch.cat((u_, v_), -1)), training = self.training))).view_as(d)
sneg = s * (1 - pos)
i, j = min([(s[i, j], (i, j)) for i, j in pos.nonzero()])[1]
k, l = sneg.max(1, keepdim = True)[1][[i, j], ...].squeeze(1)
E_m = F.relu(Alpha - s[i, j] + s[i, k]) + F.relu(Alpha - s[i, j] + s[j, l])
E_e = F.relu(Beta + d[i, j] - d[i, k]) + F.relu(Beta + d[i, j] - d[j, l])
return E_m + Lambda * E_e
optimizer_params = dict(lr = 1e-4, momentum = 0.9, weight_decay = 5e-4)
lr_scheduler_params = dict(step_size = 10, gamma = 0.1)
class Margin(Model):
def forward(self, input):
return F.normalize(Model.forward(self, input))
def criterion(self, embeddings, labels, alpha = 0.2, beta = 1.2, distance_threshold = 0.5, inf = 1e6, eps = 1e-6, distance_weighted_sampling = False):
d = pdist(embeddings)
pos = torch.eq(*[labels.unsqueeze(dim).expand_as(d) for dim in [0, 1]]).type_as(d) - torch.eye(len(d)).type_as(d)
num_neg = int(pos.sum() / len(pos))
if distance_weighted_sampling:
neg = torch.zeros_like(pos).scatter_(1, torch.multinomial((d.clamp(min = distance_threshold).pow(embeddings.size(-1) - 2) * (1 - d.clamp(min = distance_threshold).pow(2) / 4).pow(0.5 * (embeddings.size(-1) - 3))).reciprocal().masked_fill_(pos + torch.eye(len(d)).type_as(d) > 0, eps), replacement = False, num_samples = num_neg), 1)
else:
neg = topk_mask(d + inf * ((pos > 0) + (d < distance_threshold)).type_as(d), dim = 1, largest = False, K = num_neg)
L = F.relu(alpha + (pos * 2 - 1) * (d - beta))
M = ((pos + neg > 0) * (L > 0)).float()
return (M * L).sum() / M.sum()
optimizer = torch.optim.Adam
optimizer_params = dict(lr = 1e-3, weight_decay = 1e-4, base_model_lr_mult = 1e-2)
#optimizer_params = dict(lr = 1e-3, momentum = 0.9, weight_decay = 5e-4, base_model_lr_mult = 1)
#lr_scheduler_params = dict(step_size = 10, gamma = 0.5)