forked from kvos/CoastSat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
152 lines (125 loc) · 6.05 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#==========================================================#
# Shoreline extraction from satellite images
#==========================================================#
# Kilian Vos WRL 2018
#%% 1. Initial settings
# load modules
import os
import numpy as np
import pickle
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_transects
# region of interest (longitude, latitude in WGS84)
polygon = [[[151.301454, -33.700754],
[151.311453, -33.702075],
[151.307237, -33.739761],
[151.294220, -33.736329],
[151.301454, -33.700754]]]
# can also be loaded from a .kml polygon
#kml_polygon = os.path.join(os.getcwd(), 'examples', 'NARRA_polygon.kml')
#polygon = SDS_tools.polygon_from_kml(kml_polygon)
# date range
dates = ['2017-12-01', '2018-01-01']
# satellite missions
sat_list = ['S2']
# name of the site
sitename = 'NARRA'
# filepath where data will be stored
filepath_data = os.path.join(os.getcwd(), 'data')
# put all the inputs into a dictionnary
inputs = {
'polygon': polygon,
'dates': dates,
'sat_list': sat_list,
'sitename': sitename,
'filepath': filepath_data
}
#%% 2. Retrieve images
# retrieve satellite images from GEE
metadata = SDS_download.retrieve_images(inputs)
# if you have already downloaded the images, just load the metadata file
metadata = SDS_download.get_metadata(inputs)
#%% 3. Batch shoreline detection
# settings for the shoreline extraction
settings = {
# general parameters:
'cloud_thresh': 0.5, # threshold on maximum cloud cover
'output_epsg': 28356, # epsg code of spatial reference system desired for the output
# quality control:
'check_detection': True, # if True, shows each shoreline detection to the user for validation
'save_figure': True, # if True, saves a figure showing the mapped shoreline for each image
# add the inputs defined previously
'inputs': inputs,
# [ONLY FOR ADVANCED USERS] shoreline detection parameters:
'min_beach_area': 4500, # minimum area (in metres^2) for an object to be labelled as a beach
'buffer_size': 150, # radius (in metres) of the buffer around sandy pixels considered in the shoreline detection
'min_length_sl': 200, # minimum length (in metres) of shoreline perimeter to be valid
'cloud_mask_issue': False, # switch this parameter to True if sand pixels are masked (in black) on many images
'dark_sand': False, # only switch to True if your site has dark sand (e.g. black sand beach)
}
# [OPTIONAL] preprocess images (cloud masking, pansharpening/down-sampling)
SDS_preprocess.save_jpg(metadata, settings)
# [OPTIONAL] create a reference shoreline (helps to identify outliers and false detections)
settings['reference_shoreline'] = SDS_preprocess.get_reference_sl(metadata, settings)
# set the max distance (in meters) allowed from the reference shoreline for a detected shoreline to be valid
settings['max_dist_ref'] = 100
# extract shorelines from all images (also saves output.pkl and shorelines.kml)
output = SDS_shoreline.extract_shorelines(metadata, settings)
# plot the mapped shorelines
fig = plt.figure()
plt.axis('equal')
plt.xlabel('Eastings')
plt.ylabel('Northings')
plt.grid(linestyle=':', color='0.5')
for i in range(len(output['shorelines'])):
sl = output['shorelines'][i]
date = output['dates'][i]
plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y'))
plt.legend()
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
fig.set_size_inches([15.76, 8.52])
#%% 4. Shoreline analysis
# if you have already mapped the shorelines, load the output.pkl file
filepath = os.path.join(inputs['filepath'], sitename)
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'rb') as f:
output = pickle.load(f)
# now we have to define cross-shore transects over which to quantify the shoreline changes
# each transect is defined by two points, its origin and a second point that defines its orientation
# there are 3 options to create the transects:
# - option 1: draw the shore-normal transects along the beach
# - option 2: load the transect coordinates from a .kml file
# - option 3: create the transects manually by providing the coordinates
# option 1: draw origin of transect first and then a second point to define the orientation
transects = SDS_transects.draw_transects(output, settings)
# option 2: load the transects from a .geojson file
#geojson_file = os.path.join(os.getcwd(), 'examples', 'NARRA_transects.geojson')
#transects = SDS_tools.transects_from_geojson(geojson_file)
# option 3: create the transects by manually providing the coordinates of two points
#transects = dict([])
#transects['Transect 1'] = np.array([[342836, 6269215], [343315, 6269071]])
#transects['Transect 2'] = np.array([[342482, 6268466], [342958, 6268310]])
#transects['Transect 3'] = np.array([[342185, 6267650], [342685, 6267641]])
# intersect the transects with the 2D shorelines to obtain time-series of cross-shore distance
settings['along_dist'] = 25
cross_distance = SDS_transects.compute_intersection(output, transects, settings)
# plot the time-series
from matplotlib import gridspec
fig = plt.figure()
gs = gridspec.GridSpec(len(cross_distance),1)
gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05)
for i,key in enumerate(cross_distance.keys()):
if np.all(np.isnan(cross_distance[key])):
continue
ax = fig.add_subplot(gs[i,0])
ax.grid(linestyle=':', color='0.5')
ax.set_ylim([-50,50])
ax.plot(output['dates'], cross_distance[key]- np.nanmedian(cross_distance[key]), '-^', markersize=6)
ax.set_ylabel('distance [m]', fontsize=12)
ax.text(0.5,0.95,'Transect ' + key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
fig.set_size_inches([15.76, 8.52])