Skip to content

Latest commit

 

History

History
231 lines (167 loc) · 5.49 KB

README.md

File metadata and controls

231 lines (167 loc) · 5.49 KB

docker-hive-on-spark

Hive on Spark, with Docker (compose). (Experimental)

Based on this.

WARNING: these images [ come | are shipped ] with pre-included ssh keys. Though no ssh service is exposed to the public, it's suggested to regenerate keys for all your services.

Hadoop Stack Version

Hadoop: 3.3.0

Spark: 2.4.7 (Scala: 2.12.8)

Hive: 3.1.2

Nifi: 1.12.1

Flume: 1.9.0

Kafka: 2.7.0

Sqoop: 1.4.7

Zeppelin: 0.9.0

Highlights

  • Hive on Spark is enabled by default.
  • ./hive/exchange for hive data exchange.
  • All configuration files are mounted into container.

Usage

Build

./build.sh

Mirrors

SJTUG Mirrors for Ubuntu Focal mirrors.

Tongji Open Source Software Mirror for Apache mirrors.

You may change it yourself in Dockerfiles.

Tag

You may want to use your own tag. Just remember to change all corresponding occurrences in Dockerfiles and other related files.

Start

  • run build.sh to build your own images.
docker-compose up

Enter Hive

./enter-hive.sh

Stop

./stop.sh

Intergration with ElasticSearch

You should prepare your commons-httpclient-*.jar and elasticsearch-hadoop-*.jar in the exchange dirs.

In nodemaster (master):

cp exchange/elasticsearch-hadoop-*.jar $HIVE_HOME/lib/
cp exchange/commons-httpclient-*.jar $HIVE_HOME/lib/

In node* (slave/worker):

cp /exchange/commons-httpclient-*.jar /home/hadoop/spark/jars/
cp /exchange/elasticsearch-hadoop-*.jar /home/hadoop/spark/jars/

Modify hive-site.xml:

    <property>
        <name>hive.aux.jars.path</name>
        <value>/home/hadoop/hive/lib/elasticsearch-hadoop-*.jar,/home/hadoop/hive/lib/commons-httpclient-*.jar</value>
        <description>A comma separated list (with no spaces) of the jar files</description>
    </property>

Test

General

After hive initialization complete:

cp ./test_data.csv ./hive/exchange/
./enter-hive.sh

in container:

# Create directory in HDFS:
hdfs dfs -mkdir -p /user/hadoop/test
# Get file from container local to HDFS:
hdfs dfs -put /exchange/test_data.csv /user/hadoop/test/
# Spawn Hive CLI / terminal
hive

in Hive CLI / terminal:

create schema if not exists test;
create external table if not exists test.test_data (row1 int, row2 int, row3 decimal(10,3), row4 int) row format delimited fields terminated by ',' stored as textfile location 'hdfs://nodemaster:9000/user/hadoop/test/';
select * from test.test_data where row3 > 2.499;

output:

-- non-hive output snipped
hive> create schema if not exists test;
OK
Time taken: 1.475 seconds
hive> create external table if not exists test.test_data (row1 int, row2 int, row3 decimal(10,3), row4 int) row format delimited fields terminated by ',' stored as textfile location 'hdfs://nodemaster:9000/user/hadoop/test/';
OK
Time taken: 0.696 seconds
hive> select * from test.test_data where row3 > 2.499;
OK
1       122     5.000   838985046
1       185     4.500   838983525
1       231     4.000   838983392
1       292     3.500   838983421
1       316     3.000   838983392
1       329     2.500   838983392
1       377     3.500   838983834
1       420     5.000   838983834
1       466     4.000   838984679
1       480     5.000   838983653
1       520     2.500   838984679
1       539     5.000   838984068
1       586     3.500   838984068
1       588     5.000   838983339
Time taken: 4.635 seconds, Fetched: 14 row(s)
hive>

drop the table:

drop table test.test_data purge;

exit and re-enter:

exit;
hive
hive> select * from test.test_data where row3 > 2.499;

output:

-- non-hive output snipped
hive> select * from test.test_data where row3 > 2.499;
FAILED: SemanticException [Error 10001]: Line 1:14 Table not found 'test_data'

Hive on Spark

select count(*) from test.test_data where row3 > 2.499;

output:

hive> select count(*) from test.test_data where row3 > 2.499;
Query ID = hadoop_20210205123817_e20be050-c7ea-4002-a1a5-6773e649c2d1
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Hive on Spark Session Web UI URL: http://node3:4040

Query Hive on Spark job[0] stages: [0, 1]
Spark job[0] status = RUNNING
--------------------------------------------------------------------------------------
          STAGES   ATTEMPT        STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  
--------------------------------------------------------------------------------------
Stage-0 ........         0      FINISHED      1          1        0        0       0  
Stage-1 ........         0      FINISHED      1          1        0        0       0  
--------------------------------------------------------------------------------------
STAGES: 02/02    [==========================>>] 100%  ELAPSED TIME: 14.18 s    
--------------------------------------------------------------------------------------
Spark job[0] finished successfully in 14.18 second(s)
OK
14
Time taken: 29.342 seconds, Fetched: 1 row(s)
hive>