forked from ageorgou/ProPPA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinite_state_solution.py
115 lines (101 loc) · 3.47 KB
/
finite_state_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 26 15:22:41 2015
@author: Anastasis
"""
import numpy as np
from numpy import inf
import scipy.stats as spst
from scipy.linalg import expm
from utilities import gillespie,parameterise_rates,make_statespace
from mh import MetropolisSampler
def read_observations(obs_file):
pass
return None
def my_likelihood(pars,obs):
L = 1
i = 0
while i < len(obs):
ind = find_states(space,[obs(i)[1],obs(i+1)[1]])
init_prob = [0] * len(space)
init_prob[ind[0]] = 1
Dt = obs(i+1)[0] - obs(i)[0]
final_prob = transient_prob(Q,Dt,np.array(init_prob))
L = L * final_prob[ind[1]]
i = i + 1
return L
def transient_prob(Q,t,init_prob):
prob = init_prob.dot(expm(Q*t))
return prob
def find_states(target_states,state_list):
return [state_list.index(s) for s in target_states]
def load_observations(input_name):
obs = []
# see if first line has species names; if not, assign default ordering
# (from model or alphabetically?)
with open(input_name) as f:
first_line = f.readline()
tokens = first_line.strip().split()
if not all_numbers(tokens):
if is_time_header(tokens[0]):
species_names = tuple(tokens[1:])
else:
# TODO: raise something?
print('Warning: first column should be named "time"')
else:
print('Warning: no species names found, assuming default order')
f.seek(0)
for line in f:
obs.append([float(x) for x in line.strip().split()])
return obs
def all_numbers(the_list):
try:
[float(n) for n in the_list]
return True
except ValueError:
return False
def is_time_header(the_string):
return the_string == "t" or the_string == "T" or the_string == "time"
def split_observations(obs):
times = [o[0] for o in obs]
measurements = [tuple(o[1:]) for o in obs]
return (times,measurements)
if __name__ == "__main__":
# create SIR model
species_names = ('S','I','R')
def rf1(params):
return lambda s: params[0]*s[0]*s[1]
def rf2(params):
return lambda s: params[1]*s[1]
rate_functions = [rf1,rf2]
updates = [(-1,1,0),(0,-1,1)]
init_state = (10,5,0)
space = make_statespace(updates,init_state)
# draw a sample trajectory
t_f = 10
params = [0.4,0.5]
concrete_rate_functions = parameterise_rates(rate_functions,params)
sample_trace = gillespie(concrete_rate_functions,t_f,init_state,updates)
# load observations
observations_file = ""
obs = load_observations(observations_file)
# prepare the sampler configuration
conf = {'obs': [], 'parameters': []}
conf['obs'] = obs
parameter_conf = {}
parameter_conf['prior'] = spst.uniform(loc=0,scale=1)
parameter_conf['proposal'] = lambda x: spst.norm(loc=x,scale=1)
parameter_conf['limits'] = (0,inf)
conf['parameters'].extend([parameter_conf,parameter_conf])
# run a M-H sampler
class MyFiniteSampler(MetropolisSampler):
def calculate_likelihood(self,pars):
return my_likelihood(pars,self.obs)
sampler = MyFiniteSampler()
n_samples = 1000
samples = sampler.gather_samples(n_samples)
# sampler.calculate_likelihood = \
# lambda self,pars: calculate_likelihood(pars,self.obs)
# def rate_functions2(params):
# return [lambda s: params[0]*s[0]*s[1],
# lambda s: params[1]*s[1]]