forked from ageorgou/ProPPA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulate_ode_from_dist.py
86 lines (71 loc) · 2.59 KB
/
simulate_ode_from_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 2 20:42:42 2016
@author: Anastasis
"""
import numpy as np
import matplotlib.pyplot as plt
import proppa
import ode_simulator
def sample_dist(dist):
try:
return dist.rvs()
except AttributeError:
ind = np.random.random_integers(low=0,high=len(dist)-1)
return dist[ind]
# alternatively:
# if 'rvs' in dir(dist):
# return dist.rvs()
# else:
# ind = np.random.random_integers(len(dist)-1)
# return dist[ind]
def sample_paths(model,t_final=None,dists=None,n_paths=100):
# retrieve rate functions, initial state, stop time and updates from model
abstract_rate_funcs = model.reaction_functions()
updates = model.updates
init_state = model.init_state
if dists is None:
print("Using priors")
dists = [p.rhs.to_distribution() for p in model.uncertain]
if t_final is None: # use the final observation time
t_final = model.obs[-1][0]
paths = []
i = 0
while i < n_paths:
params = [sample_dist(d) for d in dists]
rate_funcs = [r(params) for r in abstract_rate_funcs]
path = ode_simulator.solve_odes(rate_funcs,updates,init_state,t_final,
n_points=1000)
paths.append(path)
i = i + 1
return paths
if __name__ == "__main__":
# toy model and distribution
model = proppa.load_model('mumps_uncertainer.proppa')
model.numerize()
t_f = 4012
dists = list(np.loadtxt('mumps_samples_part').T)
#paths = sample_paths(model,t_f,dists,n_paths=500)
paths = sample_paths(model,t_f,n_paths=500)
# fixed_values = [5,5,10,10]
# dists = [spst.rv_discrete(values=(v,1)) for v in fixed_values]
# paths = sample_paths(model,t_f,n_paths=1000,dists=dists)
ind_I = model.species_order.index('I')
for p in paths:
plt.plot(p[0],[s[ind_I] for s in p[1]])
plt.title('Paths of I (%d ODE solutions)' % len(paths))
plt.show()
ind_I = model.species_order.index('I')
norm_I = [[s[ind_I] for s in sol] for (t,sol) in paths]
plot_times = paths[0][0]
avg_path = np.average(norm_I,axis=0)
std_path = np.std(norm_I,axis=0)
upper_line = avg_path + std_path
# lower_line = avg_path - std_path
lower_line = np.maximum(avg_path - std_path,0)
plt.plot(plot_times,avg_path,lw=2)
plt.plot(plot_times,upper_line,'k--',lw=2)
plt.plot(plot_times,lower_line,'k--',lw=2)
plt.fill_between(plot_times,upper_line,lower_line,color='grey',alpha='0.5')
plt.title('Average I (+/- 1 std)')
plt.show()