-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpreprocessing.py
109 lines (75 loc) · 3.5 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import numpy as np
import h5py
import cv2
import pandas as pd
def openface_h5(video_path, landmark_path, h5_path, store_size=128):
"""
crop face from OpenFace landmarks and save a video as .h5 file.
video_path: the face video path
landmark_path: landmark .csv file generated by OpenFace.
h5_path: the path to save the h5_file
store_size: the cropped face is resized to 128 (default).
"""
landmark = pd.read_csv(landmark_path)
with h5py.File(h5_path, 'w') as f:
total_num_frame = len(landmark)
cap = cv2.VideoCapture(video_path)
for frame_num in range(total_num_frame):
if landmark[' success'][frame_num]:
lm_x = []
lm_y = []
for lm_num in range(68):
lm_x.append(landmark[' x_%d'%lm_num][frame_num])
lm_y.append(landmark[' y_%d'%lm_num][frame_num])
lm_x = np.array(lm_x)
lm_y = np.array(lm_y)
minx = np.min(lm_x)
maxx = np.max(lm_x)
miny = np.min(lm_y)
maxy = np.max(lm_y)
y_range_ext = (maxy-miny)*0.2
miny = miny - y_range_ext
cnt_x = np.round((minx+maxx)/2).astype('int')
cnt_y = np.round((maxy+miny)/2).astype('int')
break
bbox_size=np.round(1.5*(maxy-miny)).astype('int')
########### init dataset in h5 ##################
if store_size==None:
store_size = bbox_size
imgs = f.create_dataset('imgs', shape=(total_num_frame, store_size, store_size, 3),
dtype='uint8', chunks=(1,store_size, store_size,3),
compression="gzip", compression_opts=4)
for frame_num in range(total_num_frame):
if landmark[' success'][frame_num]:
lm_x_ = []
lm_y_ = []
for lm_num in range(68):
lm_x_.append(landmark[' x_%d'%lm_num][frame_num])
lm_y_.append(landmark[' y_%d'%lm_num][frame_num])
lm_x_ = np.array(lm_x_)
lm_y_ = np.array(lm_y_)
lm_x = 0.9*lm_x+0.1*lm_x_
lm_y = 0.9*lm_y+0.1*lm_y_
minx = np.min(lm_x)
maxx = np.max(lm_x)
miny = np.min(lm_y)
maxy = np.max(lm_y)
y_range_ext = (maxy-miny)*0.2
miny = miny - y_range_ext
cnt_x = np.round((minx+maxx)/2).astype('int')
cnt_y = np.round((maxy+miny)/2).astype('int')
ret, frame = cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
########## for bbox ################
bbox_half_size = int(bbox_size/2)
face = np.take(frame, range(cnt_y-bbox_half_size, cnt_y-bbox_half_size+bbox_size),0, mode='clip')
face = np.take(face, range(cnt_x-bbox_half_size, cnt_x-bbox_half_size+bbox_size),1, mode='clip')
if store_size==bbox_size:
imgs[frame_num] = face
else:
imgs[frame_num] = cv2.resize(face, (store_size,store_size))
cap.release()