Skip to content

Commit

Permalink
Update docs
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Dec 13, 2023
1 parent c3cd412 commit ce38413
Show file tree
Hide file tree
Showing 49 changed files with 6,257 additions and 1,152 deletions.
1 change: 1 addition & 0 deletions docs/_static/pygments.css
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ span.linenos.special { color: #000000; background-color: #ffffc0; padding-left:
.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #E40000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #008400 } /* Generic.Inserted */
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/Classification.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Classification">
<h1>Classification<a class="headerlink" href="#Classification" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="7e3bb452f80347b487182be357720633" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="6a4ad1d956994777a65593e9754f1901" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="90261b65e96a49bda32ab21b102f74b7" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="6cdd8bd2cae5471faa798a6e17abda6c" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
</div><p>You will find here the application of DA methods from the ADAPT package on a simple two dimensional DA classification problem.</p>
<p>First we import packages needed in the following. We will use <code class="docutils literal notranslate"><span class="pre">matplotlib</span> <span class="pre">Animation</span></code> tools in order to get a visual understanding of the mselected methods:</p>
<div class="nbinput nblast docutils container">
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/Multi_fidelity.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Multi-Fidelity">
<h1>Multi-Fidelity<a class="headerlink" href="#Multi-Fidelity" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="e9948ad0381144438747a97902f2e299" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Cc9TVY_Tl_boVzZDNisQnqe6Qx78svqe?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="9593f1d04e8d487fae6614d483a068c2" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Multi_fidelity.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="b7f17e160c584f35ab77f72abe1630cd" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Cc9TVY_Tl_boVzZDNisQnqe6Qx78svqe?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="9fbcccf624ad441da6b5a8b95fdb6ecf" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Multi_fidelity.ipynb">View on GitHub</a></p>
</div><p>The following example is a 1D regression multi-fidelity issue. Blue points are low fidelity observations and orange points are high fidelity observations. The goal is to use both datasets to learn the task on the [0, 1] interval.</p>
<p>To tackle this challenge, we use here the parameter-based method: <a class="reference external" href="#RegularTransferNN">RegularTransferNN</a></p>
<div class="nbinput nblast docutils container">
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/Regression.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Toy-Regression">
<h1>Toy Regression<a class="headerlink" href="#Toy-Regression" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="62b1ca1306cd4c57a20eb56924e43e17" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1adhqoV6b0uEavLDmMfkiwtRjam0DrXux?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="3fe4ac38ac9140e1b46e11b9cce97d7d" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Regression.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="42efb8e5fdb54707a96bda2dbf050521" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1adhqoV6b0uEavLDmMfkiwtRjam0DrXux?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="b5b70ecbde3a4a18a877bc6be554a0fd" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Regression.ipynb">View on GitHub</a></p>
</div><p>You will find here the application of DA methods from the ADAPT package on a simple one dimensional DA regression problem.</p>
<p>First we import packages needed in the following. We will use <code class="docutils literal notranslate"><span class="pre">matplotlib</span> <span class="pre">Animation</span></code> tools in order to get a visual understanding of the selected methods:</p>
<div class="nbinput nblast docutils container">
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/Rotation.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Rotation">
<h1>Rotation<a class="headerlink" href="#Rotation" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="e16e134fec644d039528551ebe346449" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1XePW12UF80PKzvLu9cyRJKWQoZIxk_J2?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="2d1057f8218f4128b5904b6c3e0dff1a" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Rotation.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="37770c72d1ec444c8cb82b1eb3eaeecd" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1XePW12UF80PKzvLu9cyRJKWQoZIxk_J2?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="dccc5835c5f3415b97eb84f9b4aa5c5f" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Rotation.ipynb">View on GitHub</a></p>
</div><div class="nbinput nblast docutils container">
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[2]:
</pre></div>
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/Two_moons.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Two-Moons">
<h1>Two Moons<a class="headerlink" href="#Two-Moons" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="71b610b43b4d4146af82022e3a324853" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Tz-TIkHI8ashHP90Im6D3tMjZ3lkR7s6?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="cbb67d5e18cf4dd4844ac33cb8aa1293" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Two_moons.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="0fe2bb6b54a34673aec0f391f69be190" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Tz-TIkHI8ashHP90Im6D3tMjZ3lkR7s6?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="5d59ec720b2a47e1b6704452654ce44d" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Two_moons.ipynb">View on GitHub</a></p>
</div><p>The following example is a binary classification domain adaptation issue. The goal is to learn the classification task on the target data (black points) knowing only the labels on the source data (red and blue points).</p>
<p>The following methods are being tested:</p>
<ul class="simple">
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/sample_bias.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Sample-Bias-1D">
<h1>Sample Bias 1D<a class="headerlink" href="#Sample-Bias-1D" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="ea0bed12768342f1b69e50a4be56886f" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Hbg2kDXKjKzeQKJSwxzaV7pwbmORhyA3?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="a1021324aa814b83b92ec30bd04a12ec" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="75f6048a976d497eaf205a4391ed2284" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Hbg2kDXKjKzeQKJSwxzaV7pwbmORhyA3?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="83a950246e294f09ac98bc4ae90232fd" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias.ipynb">View on GitHub</a></p>
</div><p>The following example is a 1D regression domain adaptation issue. The goal is to learn the regression task on the target data (orange points) knowing only the labels on the source data (blue points).</p>
<p>In this example, there is a sample bias between the source and target datasets. The sources are drawn according to a gaussian distribution whereas the targets are uniformly distributed.</p>
<p>The following methods are being tested:</p>
Expand Down
4 changes: 2 additions & 2 deletions docs/examples/sample_bias_2d.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,8 +530,8 @@
</style>
<section id="Sample-Bias-2D">
<h1>Sample Bias 2D<a class="headerlink" href="#Sample-Bias-2D" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="04896b8e48ed48c7ad2ae1e0b7734dae" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/12_9rgPXobyeaKYlXh_fJPNfrbODdvuHY?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="df8dc67b1f6f4ee29bc27dd2314f55da" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias_2d.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="b6a0900ad16f4150b4e3ff9a65bffe9b" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/12_9rgPXobyeaKYlXh_fJPNfrbODdvuHY?usp=sharing">Run in Google Colab</a></p>
</div><div class="btn btn-notebook" role="button"><p><img alt="306310bc195e4c90ba243244657d05f0" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias_2d.ipynb">View on GitHub</a></p>
</div><p>The following example is a 2D regression domain adaptation issue. The goal is to learn the regression task on the target data (orange points) knowing only the labels on the source data (blue points).</p>
<p>In this example, there is a sample bias between the source and target datasets. The sources are mostly located in X1=0 whereas the targets are uniformly distributed.</p>
<p>The following methods are being tested:</p>
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/tradaboost_experiments.html
Original file line number Diff line number Diff line change
Expand Up @@ -530,7 +530,7 @@
</style>
<section id="Reproduction-of-the-TrAdaBoost-experiments">
<h1>Reproduction of the TrAdaBoost experiments<a class="headerlink" href="#Reproduction-of-the-TrAdaBoost-experiments" title="Permalink to this headline"></a></h1>
<div class="btn btn-notebook" role="button"><p><img alt="6dc109b89c8a4931ab40c072d45fc36c" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/adapt/blob/master/src_docs/examples/tradaboost_experiments.ipynb">View on GitHub</a></p>
<div class="btn btn-notebook" role="button"><p><img alt="374b4b51781943cb88314a114ae60ee3" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/adapt/blob/master/src_docs/examples/tradaboost_experiments.ipynb">View on GitHub</a></p>
</div><p>The purpose of this example is to reproduce the results obtained in the paper <a class="reference external" href="https://cse.hkust.edu.hk/~qyang/Docs/2007/tradaboost.pdf">Boosting for Transfer Learning (2007)</a>. In this work, the authors developed a transfer algorithm called TrAdaBoost dedicated for <a class="reference external" href="https://adapt-python.github.io/adapt/map.html">supervised domain adaptation</a>. You can find more details about this algorithm <a class="reference external" href="https://adapt-python.github.io/adapt/generated/adapt.instance_based.TrAdaBoost.html">here</a>. The
goal of this algorithm is to combine a source dataset with many labeled instances to a target dataset with few labels in order to learn a good model on the target domain.</p>
<p>We try to reproduce the two following exepriments:</p>
Expand Down
Loading

0 comments on commit ce38413

Please sign in to comment.