Skip to content

Wasmtime may have data leakage between instances in the pooling allocator

High severity GitHub Reviewed Published Nov 10, 2022 in bytecodealliance/wasmtime • Updated Feb 2, 2023

Package

cargo wasmtime (Rust)

Affected versions

< 2.0.2

Patched versions

2.0.2

Description

Impact

There is a bug in Wasmtime's implementation of it's pooling instance allocator where when a linear memory is reused for another instance the initial heap snapshot of the prior instance can be visible, erroneously to the next instance. The pooling instance allocator in Wasmtime works by preallocating virtual memory for a fixed number of instances to reside in and then new instantiations pick a slot to use. Most conventional modules additionally have an initial copy-on-write "heap image" which is mapped in Wasmtime into the linear memory slot. When a heap slot is deallocated Wasmtime resets all of its contents back to the initial state but it does not unmap the image in case the next instance is an instantiation of the same module.

The bug in Wasmtime occurs when a slot in the pooling allocator previously was used for a module with a heap image, meaning that its current state of memory contains the initial heap contents of that module. If the next instantiation within that slot does not itself contain a heap image then Wasmtime would leave the old heap image in place erroneously and continue with instantiation. This means that instantiations of modules without a heap image can see the initial heap image of the prior instantiation within that slot.

Heap images in Wasmtime are created by precomputing WebAssembly data segments into one large mapping to be placed into linear memory at a particular offset. Most modules produced by toolchains today will have a heap image and an initialization snapshot. Creating a module without a heap image would require a hand-crafted *.wat file or a specially crafted source program. This consequence means that this bug is highly unlikely to be accidentally triggered and would otherwise require an intentional trigger with a hand-crafted module.

One important part of this vulnerability is Wasmtime is highly likely to segfault when the slot is reused again with a module that itself has an initialization image. For example if module A has a heap initialization image and module B does not have a heap initialization image, then the following sequence of events could happen if they all are instantiated into the same instance slot:

  • Module A is instantiated, and then deallocated. This leaves A's heap image in place, reset to its initial contents.
  • Module B is instantiated and erroneously can see the initial heap contents of A. Module B is then deallocated and the entire heap is unmapped and reset back to zero.
  • Module A is instantiated again, but the state tracking the slot did not account for module B so it thinks the module image is still mapped and proceeds with instantiation. Any action on A's part to access linear memory will then trap and if the host accesses A's memory it will segfault because the data that's supposed to be mapped is all unmapped.

Adding this all together this means that in practice modules must be deliberately crafted to not have an initial heap image to view the contents of a prior image. If this module is instantiated though then when the slot is reused the next, likely image-using, module will believe its memory is mapped when it isn't, causing the host to segfault on unmapped memory it believed was mapped.

Patches

This bug has been patched and users should upgrade to Wasmtime 2.0.2.

Workarounds

Trigging this bug requires the pooling allocator to be configured and for copy-on-write heap images to also be enabled. Pooling allocation is not enabled by default but copy-on-write heap images are. Mitigations for this bug include:

  • Disabling the pooling allocator - note that pooling allocation is not enabled by default in Wasmtime
  • Disabling the memory-init-cow feature or with Config::memory_init_cow

References

For more information

If you have any questions or comments about this advisory:

References

@alexcrichton alexcrichton published to bytecodealliance/wasmtime Nov 10, 2022
Published by the National Vulnerability Database Nov 10, 2022
Published to the GitHub Advisory Database Nov 10, 2022
Reviewed Nov 10, 2022
Last updated Feb 2, 2023

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
Low
Privileges required
None
User interaction
None
Scope
Changed
Confidentiality
High
Integrity
None
Availability
None

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:N

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(48th percentile)

CVE ID

CVE-2022-39393

GHSA ID

GHSA-wh6w-3828-g9qf

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.