Skip to content

Commit

Permalink
Adds Relation.Nullary.Recomputable plus consequences (#2243)
Browse files Browse the repository at this point in the history
* prototype for fixing #2199

* delegate to `Relation.Nullary.Negation.Core.weak-contradiction`

* refactoring: lift out `Recomputable` in its own right

* forgot to add this module

* refactoring: tweak

* tidying up; added `CHANGELOG`

* more tidying up

* streamlined `import`s

* removed `Recomputable` from `Relation.Nullary`

* fixed multiple definitions in `Relation.Unary`

* reorder `CHANGELOG` entries after merge

* `contradiciton` via `weak-contradiction`

* irrefutable `with`

* use `of`

* only use *irrelevant* `⊥-elim-irr`

* tightened `import`s

* removed `irr-contradiction`

* inspired by #2329

* conjecture: all uses of `contradiction` can be made weak

* second thoughts: reverted last round of chnages

* lazier pattern analysis cf. #2055

* dependencies: uncoupled from `Recomputable`

* moved `⊥` and `¬ A` properties to this one place

* removed `contradictionᵒ` and rephrased everything in terms of `weak-contradiction`

* knock-on consequences; simplified `import`s

* narrow `import`s

* narrow `import`s; irrefutable `with`

* narrow `import`s; `CHANGELOG`

* narrow `import`s

* response to review comments

* irrelevance of `recompute`

* knock-on, plus proof of `UIP` from #2149

* knock-ons from renaming

* knock-on from renaming

* pushed proof `recompute-constant` to `Recomputable`
  • Loading branch information
jamesmckinna authored Jun 5, 2024
1 parent d970b78 commit b13a032
Show file tree
Hide file tree
Showing 12 changed files with 207 additions and 107 deletions.
78 changes: 53 additions & 25 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,25 +118,9 @@ New modules
Algebra.Module.Bundles.Raw
```

* Properties of `List` modulo `Setoid` equality (currently only the ([],++) monoid):
```
Data.List.Relation.Binary.Equality.Setoid.Properties
```

* Refactoring of `Data.List.Base.{scanr|scanl}` and their properties:
```
Data.List.Scans.Base
Data.List.Scans.Properties
```

* Prime factorisation of natural numbers.
```
Data.Nat.Primality.Factorisation
```

* Consequences of 'infinite descent' for (accessible elements of) well-founded relations:
* Nagata's construction of the "idealization of a module":
```agda
Induction.InfiniteDescent
Algebra.Module.Construct.Idealization
```

* The unique morphism from the initial, resp. terminal, algebra:
Expand All @@ -145,16 +129,35 @@ New modules
Algebra.Morphism.Construct.Terminal
```

* Nagata's construction of the "idealization of a module":
* Pointwise and equality relations over indexed containers:
```agda
Algebra.Module.Construct.Idealization
Data.Container.Indexed.Relation.Binary.Pointwise
Data.Container.Indexed.Relation.Binary.Pointwise.Properties
Data.Container.Indexed.Relation.Binary.Equality.Setoid
```

* Refactoring of `Data.List.Base.{scanr|scanl}` and their properties:
```
Data.List.Scans.Base
Data.List.Scans.Properties
```

* Properties of `List` modulo `Setoid` equality (currently only the ([],++) monoid):
```
Data.List.Relation.Binary.Equality.Setoid.Properties
```

* `Data.List.Relation.Binary.Sublist.Propositional.Slice`
replacing `Data.List.Relation.Binary.Sublist.Propositional.Disjoint` (*)
and adding new functions:
- `⊆-upper-bound-is-cospan` generalising `⊆-disjoint-union-is-cospan` from (*)
- `⊆-upper-bound-cospan` generalising `⊆-disjoint-union-cospan` from (*)
```
* Prime factorisation of natural numbers.
```
Data.Nat.Primality.Factorisation
```
* `Data.Vec.Functional.Relation.Binary.Permutation`, defining:
```agda
Expand All @@ -180,6 +183,11 @@ New modules
_⇨_ = setoid
```

* Consequences of 'infinite descent' for (accessible elements of) well-founded relations:
```agda
Induction.InfiniteDescent
```

* Symmetric interior of a binary relation
```
Relation.Binary.Construct.Interior.Symmetric
Expand All @@ -190,12 +198,11 @@ New modules
Relation.Binary.Properties.DecSetoid
```

* Pointwise and equality relations over indexed containers:
* Systematise the use of `Recomputable A = .A → A`:
```agda
Data.Container.Indexed.Relation.Binary.Pointwise
Data.Container.Indexed.Relation.Binary.Pointwise.Properties
Data.Container.Indexed.Relation.Binary.Equality.Setoid
Relation.Nullary.Recomputable
```
with `Recomputable` exported publicly from `Relation.Nullary`.

* New IO primitives to handle buffering
```agda
Expand Down Expand Up @@ -372,6 +379,11 @@ Additions to existing modules
Subtrees o c = (r : Response c) → X (next c r)
```

* In `Data.Empty`:
```agda
⊥-elim-irr : .⊥ → Whatever
```

* In `Data.Fin.Properties`:
```agda
nonZeroIndex : Fin n → ℕ.NonZero n
Expand Down Expand Up @@ -674,7 +686,7 @@ Additions to existing modules
* Added new definitions in `Relation.Binary.Definitions`
```
Stable _∼_ = ∀ x y → Nullary.Stable (x ∼ y)
Empty _∼_ = ∀ {x y} → x ∼ y → ⊥
Empty _∼_ = ∀ {x y} → ¬ (x ∼ y)
```

* Added new proofs in `Relation.Binary.Properties.Setoid`:
Expand All @@ -690,11 +702,27 @@ Additions to existing modules
WeaklyDecidable : Set _
```

* Added new proof in `Relation.Nullary.Decidable.Core`:
```agda
recompute-constant : (a? : Dec A) (p q : A) → recompute a? p ≡ recompute a? q
```

* Added new proof in `Relation.Nullary.Decidable`:
```agda
⌊⌋-map′ : (a? : Dec A) → ⌊ map′ t f a? ⌋ ≡ ⌊ a? ⌋
```

* Added new definitions in `Relation.Nullary.Negation.Core`:
```agda
contradiction-irr : .A → ¬ A → Whatever
```

* Added new definitions in `Relation.Nullary.Reflects`:
```agda
recompute : Reflects A b → Recomputable A
recompute-constant : (r : Reflects A b) (p q : A) → recompute r p ≡ recompute r q
```

* Added new definitions in `Relation.Unary`
```
Stable : Pred A ℓ → Set _
Expand Down
35 changes: 17 additions & 18 deletions src/Axiom/UniquenessOfIdentityProofs.agda
Original file line number Diff line number Diff line change
Expand Up @@ -8,23 +8,27 @@

module Axiom.UniquenessOfIdentityProofs where

open import Data.Bool.Base using (true; false)
open import Data.Empty
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary hiding (Irrelevant)
open import Level using (Level)
open import Relation.Nullary.Decidable.Core using (recompute; recompute-constant)
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality.Core
open import Relation.Binary.PropositionalEquality.Properties

private
variable
a : Level
A : Set a
x y : A

------------------------------------------------------------------------
-- Definition
--
-- Uniqueness of Identity Proofs (UIP) states that all proofs of
-- equality are themselves equal. In other words, the equality relation
-- is irrelevant. Here we define UIP relative to a given type.

UIP : {a} (A : Set a) Set a
UIP : (A : Set a) Set a
UIP A = Irrelevant {A = A} _≡_

------------------------------------------------------------------------
Expand All @@ -39,11 +43,11 @@ UIP A = Irrelevant {A = A} _≡_
-- the image of any other proof.

module Constant⇒UIP
{a} {A : Set a} (f : _≡_ {A = A} ⇒ _≡_)
(f-constant : {a b} (p q : ab) f p ≡ f q)
(f : _≡_ {A = A} ⇒ _≡_)
(f-constant : {x y} (p q : xy) f p ≡ f q)
where

≡-canonical : {a b} (p : ab) trans (sym (f refl)) (f p) ≡ p
≡-canonical : (p : xy) trans (sym (f refl)) (f p) ≡ p
≡-canonical refl = trans-symˡ (f refl)

≡-irrelevant : UIP A
Expand All @@ -59,19 +63,14 @@ module Constant⇒UIP
-- function over proofs of equality which is constant: it returns the
-- proof produced by the decision procedure.

module Decidable⇒UIP
{a} {A : Set a} (_≟_ : DecidableEquality A)
module Decidable⇒UIP (_≟_ : DecidableEquality A)
where

≡-normalise : _≡_ {A = A} ⇒ _≡_
≡-normalise {a} {b} a≡b with a ≟ b
... | true because [p] = invert [p]
... | false because [¬p] = ⊥-elim (invert [¬p] a≡b)

≡-normalise-constant : {a b} (p q : a ≡ b) ≡-normalise p ≡ ≡-normalise q
≡-normalise-constant {a} {b} p q with a ≟ b
... | true because _ = refl
... | false because [¬p] = ⊥-elim (invert [¬p] p)
≡-normalise {x} {y} x≡y = recompute (x ≟ y) x≡y

≡-normalise-constant : (p q : x ≡ y) ≡-normalise p ≡ ≡-normalise q
≡-normalise-constant {x = x} {y = y} = recompute-constant (x ≟ y)

≡-irrelevant : UIP A
≡-irrelevant = Constant⇒UIP.≡-irrelevant ≡-normalise ≡-normalise-constant
3 changes: 3 additions & 0 deletions src/Data/Empty.agda
Original file line number Diff line number Diff line change
Expand Up @@ -35,3 +35,6 @@ private

⊥-elim : {w} {Whatever : Set w} Whatever
⊥-elim ()

⊥-elim-irr : {w} {Whatever : Set w} .⊥ Whatever
⊥-elim-irr ()
4 changes: 1 addition & 3 deletions src/Relation/Binary/Definitions.agda
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,6 @@ module Relation.Binary.Definitions where

open import Agda.Builtin.Equality using (_≡_)

open import Data.Empty using (⊥)
open import Data.Maybe.Base using (Maybe)
open import Data.Product.Base using (_×_; ∃-syntax)
open import Data.Sum.Base using (_⊎_)
open import Function.Base using (_on_; flip)
Expand Down Expand Up @@ -248,7 +246,7 @@ Universal _∼_ = ∀ x y → x ∼ y
-- Empty - no elements are related

Empty : REL A B ℓ Set _
Empty _∼_ = {x y} x ∼ y
Empty _∼_ = {x y} ¬ (x ∼ y)

-- Non-emptiness - at least one pair of elements are related.

Expand Down
10 changes: 2 additions & 8 deletions src/Relation/Nullary.agda
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,9 @@ private
------------------------------------------------------------------------
-- Re-exports

open import Relation.Nullary.Recomputable public using (Recomputable)
open import Relation.Nullary.Negation.Core public
open import Relation.Nullary.Reflects public
open import Relation.Nullary.Reflects public hiding (recompute; recompute-constant)
open import Relation.Nullary.Decidable.Core public

------------------------------------------------------------------------
Expand All @@ -33,13 +34,6 @@ open import Relation.Nullary.Decidable.Core public
Irrelevant : Set p Set p
Irrelevant P = (p₁ p₂ : P) p₁ ≡ p₂

------------------------------------------------------------------------
-- Recomputability - we can rebuild a relevant proof given an
-- irrelevant one.

Recomputable : Set p Set p
Recomputable P = .P P

------------------------------------------------------------------------
-- Weak decidability
-- `nothing` is 'don't know'/'give up'; `just` is `yes`/`definitely`
Expand Down
24 changes: 10 additions & 14 deletions src/Relation/Nullary/Decidable.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,14 @@
module Relation.Nullary.Decidable where

open import Level using (Level)
open import Data.Bool.Base using (true; false; if_then_else_)
open import Data.Empty using (⊥-elim)
open import Data.Bool.Base using (true; false)
open import Data.Product.Base using (∃; _,_)
open import Function.Base
open import Function.Bundles using
(Injection; module Injection; module Equivalence; _⇔_; _↔_; mk↔ₛ′)
open import Relation.Binary.Bundles using (Setoid; module Setoid)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Nullary
open import Relation.Nullary using (Irrelevant)
open import Relation.Nullary.Negation.Core using (¬_; contradiction)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; sym; trans; cong′)
Expand Down Expand Up @@ -52,8 +51,8 @@ via-injection inj _≟_ x y = map′ injective cong (to x ≟ to y)
-- A lemma relating True and Dec

True-↔ : (a? : Dec A) Irrelevant A True a? ↔ A
True-↔ (true because [a]) irr = mk↔ₛ′ (λ _ invert [a]) _ (irr (invert [a])) cong′
True-↔ (false because ofⁿ ¬a) _ = mk↔ₛ′ (λ ()) (invert (ofⁿ ¬a)) (⊥-elim ∘ ¬a) λ ()
True-↔ (true because [a]) irr = let a = invert [a] in mk↔ₛ′ (λ _ a) _ (irr a) cong′
True-↔ (false because [¬a]) _ = let ¬a = invert [¬a] in mk↔ₛ′ (λ ()) ¬a (λ a contradiction a ¬a) λ ()

------------------------------------------------------------------------
-- Result of decidability
Expand All @@ -64,23 +63,20 @@ isYes≗does (false because _) = refl

dec-true : (a? : Dec A) A does a? ≡ true
dec-true (true because _ ) a = refl
dec-true (false because [¬a]) a = ⊥-elim (invert [¬a] a)
dec-true (false because [¬a]) a = contradiction a (invert [¬a])

dec-false : (a? : Dec A) ¬ A does a? ≡ false
dec-false (false because _ ) ¬a = refl
dec-false (true because [a]) ¬a = ⊥-elim (¬a (invert [a]))
dec-false (true because [a]) ¬a = contradiction (invert [a]) ¬a

dec-yes : (a? : Dec A) A λ a a? ≡ yes a
dec-yes a? a with dec-true a? a
dec-yes (yes a′) a | refl = a′ , refl
dec-yes a? a with yes a′ a? | refl dec-true a? a = a′ , refl

dec-no : (a? : Dec A) (¬a : ¬ A) a? ≡ no ¬a
dec-no a? ¬a with dec-false a? ¬a
dec-no (no _) _ | refl = refl
dec-no a? ¬a with no _ a? | refl dec-false a? ¬a = refl

dec-yes-irr : (a? : Dec A) Irrelevant A (a : A) a? ≡ yes a
dec-yes-irr a? irr a with dec-yes a? a
... | a′ , eq rewrite irr a a′ = eq
dec-yes-irr a? irr a with a′ , eq dec-yes a? a rewrite irr a a′ = eq

⌊⌋-map′ : t f (a? : Dec A) ⌊ map′ {B = B} t f a? ⌋ ≡ ⌊ a? ⌋
⌊⌋-map′ t f a? = trans (isYes≗does (map′ t f a?)) (sym (isYes≗does a?))
23 changes: 14 additions & 9 deletions src/Relation/Nullary/Decidable/Core.agda
Original file line number Diff line number Diff line change
Expand Up @@ -11,17 +11,19 @@

module Relation.Nullary.Decidable.Core where

open import Agda.Builtin.Equality using (_≡_)
open import Level using (Level; Lift)
open import Data.Bool.Base using (Bool; T; false; true; not; _∧_; _∨_)
open import Data.Unit.Polymorphic.Base using (⊤)
open import Data.Empty.Irrelevant using (⊥-elim)
open import Data.Product.Base using (_×_)
open import Data.Sum.Base using (_⊎_)
open import Function.Base using (_∘_; const; _$_; flip)
open import Relation.Nullary.Reflects
open import Relation.Nullary.Recomputable as Recomputable hiding (recompute-constant)
open import Relation.Nullary.Reflects as Reflects hiding (recompute; recompute-constant)
open import Relation.Nullary.Negation.Core
using (¬_; Stable; negated-stable; contradiction; DoubleNegation)


private
variable
a b : Level
Expand Down Expand Up @@ -69,9 +71,12 @@ module _ {A : Set a} where

-- Given an irrelevant proof of a decidable type, a proof can
-- be recomputed and subsequently used in relevant contexts.
recompute : Dec A .A A
recompute (yes a) _ = a
recompute (no ¬a) a = ⊥-elim (¬a a)

recompute : Dec A Recomputable A
recompute = Reflects.recompute ∘ proof

recompute-constant : (a? : Dec A) (p q : A) recompute a? p ≡ recompute a? q
recompute-constant = Recomputable.recompute-constant ∘ recompute

------------------------------------------------------------------------
-- Interaction with negation, sum, product etc.
Expand Down Expand Up @@ -161,17 +166,17 @@ from-no (true because _ ) = _

map′ : (A B) (B A) Dec A Dec B
does (map′ A→B B→A a?) = does a?
proof (map′ A→B B→A (true because [a])) = ofʸ (A→B (invert [a]))
proof (map′ A→B B→A (false because [¬a])) = ofⁿ (invert [¬a] ∘ B→A)
proof (map′ A→B B→A (true because [a])) = of (A→B (invert [a]))
proof (map′ A→B B→A (false because [¬a])) = of (invert [¬a] ∘ B→A)

------------------------------------------------------------------------
-- Relationship with double-negation

-- Decidable predicates are stable.

decidable-stable : Dec A Stable A
decidable-stable (yes a) ¬¬a = a
decidable-stable (no ¬a) ¬¬a = contradiction ¬a ¬¬a
decidable-stable (true because [a]) ¬¬a = invert [a]
decidable-stable (false because [¬a]) ¬¬a = contradiction (invert [¬a]) ¬¬a

¬-drop-Dec : Dec (¬ ¬ A) Dec (¬ A)
¬-drop-Dec ¬¬a? = map′ negated-stable contradiction (¬? ¬¬a?)
Expand Down
Loading

0 comments on commit b13a032

Please sign in to comment.