-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement trait based API for define AggregateUDF (#8733)
* Implement trait based API for define AggregateUDF * implement Inner * fix test case && doc * fix annotation
- Loading branch information
Showing
12 changed files
with
581 additions
and
111 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use datafusion::{arrow::datatypes::DataType, logical_expr::Volatility}; | ||
use std::{any::Any, sync::Arc}; | ||
|
||
use arrow::{ | ||
array::{ArrayRef, Float32Array}, | ||
record_batch::RecordBatch, | ||
}; | ||
use datafusion::error::Result; | ||
use datafusion::prelude::*; | ||
use datafusion_common::{cast::as_float64_array, ScalarValue}; | ||
use datafusion_expr::{Accumulator, AggregateUDF, AggregateUDFImpl, Signature}; | ||
|
||
/// This example shows how to use the full AggregateUDFImpl API to implement a user | ||
/// defined aggregate function. As in the `simple_udaf.rs` example, this struct implements | ||
/// a function `accumulator` that returns the `Accumulator` instance. | ||
/// | ||
/// To do so, we must implement the `AggregateUDFImpl` trait. | ||
#[derive(Debug, Clone)] | ||
struct GeoMeanUdf { | ||
signature: Signature, | ||
} | ||
|
||
impl GeoMeanUdf { | ||
/// Create a new instance of the GeoMeanUdf struct | ||
fn new() -> Self { | ||
Self { | ||
signature: Signature::exact( | ||
// this function will always take one arguments of type f64 | ||
vec![DataType::Float64], | ||
// this function is deterministic and will always return the same | ||
// result for the same input | ||
Volatility::Immutable, | ||
), | ||
} | ||
} | ||
} | ||
|
||
impl AggregateUDFImpl for GeoMeanUdf { | ||
/// We implement as_any so that we can downcast the AggregateUDFImpl trait object | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
/// Return the name of this function | ||
fn name(&self) -> &str { | ||
"geo_mean" | ||
} | ||
|
||
/// Return the "signature" of this function -- namely that types of arguments it will take | ||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
/// What is the type of value that will be returned by this function. | ||
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> { | ||
Ok(DataType::Float64) | ||
} | ||
|
||
/// This is the accumulator factory; DataFusion uses it to create new accumulators. | ||
fn accumulator(&self, _arg: &DataType) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(GeometricMean::new())) | ||
} | ||
|
||
/// This is the description of the state. accumulator's state() must match the types here. | ||
fn state_type(&self, _return_type: &DataType) -> Result<Vec<DataType>> { | ||
Ok(vec![DataType::Float64, DataType::UInt32]) | ||
} | ||
} | ||
|
||
/// A UDAF has state across multiple rows, and thus we require a `struct` with that state. | ||
#[derive(Debug)] | ||
struct GeometricMean { | ||
n: u32, | ||
prod: f64, | ||
} | ||
|
||
impl GeometricMean { | ||
// how the struct is initialized | ||
pub fn new() -> Self { | ||
GeometricMean { n: 0, prod: 1.0 } | ||
} | ||
} | ||
|
||
// UDAFs are built using the trait `Accumulator`, that offers DataFusion the necessary functions | ||
// to use them. | ||
impl Accumulator for GeometricMean { | ||
// This function serializes our state to `ScalarValue`, which DataFusion uses | ||
// to pass this state between execution stages. | ||
// Note that this can be arbitrary data. | ||
fn state(&self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.prod), | ||
ScalarValue::from(self.n), | ||
]) | ||
} | ||
|
||
// DataFusion expects this function to return the final value of this aggregator. | ||
// in this case, this is the formula of the geometric mean | ||
fn evaluate(&self) -> Result<ScalarValue> { | ||
let value = self.prod.powf(1.0 / self.n as f64); | ||
Ok(ScalarValue::from(value)) | ||
} | ||
|
||
// DataFusion calls this function to update the accumulator's state for a batch | ||
// of inputs rows. In this case the product is updated with values from the first column | ||
// and the count is updated based on the row count | ||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
if values.is_empty() { | ||
return Ok(()); | ||
} | ||
let arr = &values[0]; | ||
(0..arr.len()).try_for_each(|index| { | ||
let v = ScalarValue::try_from_array(arr, index)?; | ||
|
||
if let ScalarValue::Float64(Some(value)) = v { | ||
self.prod *= value; | ||
self.n += 1; | ||
} else { | ||
unreachable!("") | ||
} | ||
Ok(()) | ||
}) | ||
} | ||
|
||
// Merge the output of `Self::state()` from other instances of this accumulator | ||
// into this accumulator's state | ||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
if states.is_empty() { | ||
return Ok(()); | ||
} | ||
let arr = &states[0]; | ||
(0..arr.len()).try_for_each(|index| { | ||
let v = states | ||
.iter() | ||
.map(|array| ScalarValue::try_from_array(array, index)) | ||
.collect::<Result<Vec<_>>>()?; | ||
if let (ScalarValue::Float64(Some(prod)), ScalarValue::UInt32(Some(n))) = | ||
(&v[0], &v[1]) | ||
{ | ||
self.prod *= prod; | ||
self.n += n; | ||
} else { | ||
unreachable!("") | ||
} | ||
Ok(()) | ||
}) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
} | ||
} | ||
|
||
// create local session context with an in-memory table | ||
fn create_context() -> Result<SessionContext> { | ||
use datafusion::arrow::datatypes::{Field, Schema}; | ||
use datafusion::datasource::MemTable; | ||
// define a schema. | ||
let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Float32, false)])); | ||
|
||
// define data in two partitions | ||
let batch1 = RecordBatch::try_new( | ||
schema.clone(), | ||
vec![Arc::new(Float32Array::from(vec![2.0, 4.0, 8.0]))], | ||
)?; | ||
let batch2 = RecordBatch::try_new( | ||
schema.clone(), | ||
vec![Arc::new(Float32Array::from(vec![64.0]))], | ||
)?; | ||
|
||
// declare a new context. In spark API, this corresponds to a new spark SQLsession | ||
let ctx = SessionContext::new(); | ||
|
||
// declare a table in memory. In spark API, this corresponds to createDataFrame(...). | ||
let provider = MemTable::try_new(schema, vec![vec![batch1], vec![batch2]])?; | ||
ctx.register_table("t", Arc::new(provider))?; | ||
Ok(ctx) | ||
} | ||
|
||
#[tokio::main] | ||
async fn main() -> Result<()> { | ||
let ctx = create_context()?; | ||
|
||
// create the AggregateUDF | ||
let geometric_mean = AggregateUDF::from(GeoMeanUdf::new()); | ||
ctx.register_udaf(geometric_mean.clone()); | ||
|
||
let sql_df = ctx.sql("SELECT geo_mean(a) FROM t").await?; | ||
sql_df.show().await?; | ||
|
||
// get a DataFrame from the context | ||
// this table has 1 column `a` f32 with values {2,4,8,64}, whose geometric mean is 8.0. | ||
let df = ctx.table("t").await?; | ||
|
||
// perform the aggregation | ||
let df = df.aggregate(vec![], vec![geometric_mean.call(vec![col("a")])])?; | ||
|
||
// note that "a" is f32, not f64. DataFusion coerces it to match the UDAF's signature. | ||
|
||
// execute the query | ||
let results = df.collect().await?; | ||
|
||
// downcast the array to the expected type | ||
let result = as_float64_array(results[0].column(0))?; | ||
|
||
// verify that the calculation is correct | ||
assert!((result.value(0) - 8.0).abs() < f64::EPSILON); | ||
println!("The geometric mean of [2,4,8,64] is {}", result.value(0)); | ||
|
||
Ok(()) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.