Skip to content

Supplemental Material for MAIZE YIELD PREDICTION BASED ON MULTI-MODALITY REMOTE SENSING AND LSTM MODELS IN NITROGEN MANAGEMENT PRACTICE TRIALS

Notifications You must be signed in to change notification settings

ceavilest/Maize_Yield_Prediction_Whispers2022

Repository files navigation

Maize_Yield_Prediction_Whispers2022

Supplemental Material for MAIZE YIELD PREDICTION BASED ON MULTI-MODALITY REMOTE SENSING AND LSTM MODELS IN NITROGEN MANAGEMENT PRACTICE TRIALS

Table Hyperspectral Indices Extracted

No. Hyperspectal Index Formula Name
1 NDVI705 $\LARGE\frac{\rho_{750}-\rho_{705}}{\rho_{750}+\rho_{705}}$ Red Edge Normalized Difference Vegetation Index 1
2 mNDVI705 $\LARGE\frac{\rho_{750}-\rho_{705}}{\rho_{750}+\rho_{705}-2\rho_{445}}$ Modified Red Edge Normalized Difference Vegetation Index. 1
3 mSR705 $\LARGE\frac{\rho_{750}-\rho_{445}}{\rho_{705}-\rho_{445}}$ Modified Red Edge Simple Ratio Index 2
4 GNDVI $\LARGE\frac{\rho_{750}-\rho_{550}}{\rho_{750}+\rho_{550}}$ Green Difference Vegetation Index 2
5 RNDVI $\LARGE\frac{\rho_{800}-\rho_{670}}{\rho_{800}+\rho_{670}}$ Relative Normalized Difference Vegetation Index 3
6 NDCI $\LARGE\frac{\rho_{762}-\rho_{527}}{\rho_{762}+\rho_{527}}$ Normalized Difference Chlorophyll Index 4
7 Datt1 $\LARGE\frac{\rho_{850}-\rho_{710}}{\rho_{850}-\rho_{680}}$ Datt Water Content Index 5
8 Datt2 $\LARGE\frac{\rho_{850}}{\rho_{710}}$ Datt Water Content Index 5
9 Datt3 $\LARGE\frac{\rho_{754}}{\rho_{704}}$ Datt Water Content Index 5
10 Carte1 $\LARGE\frac{\rho_{695}}{\rho_{420}}$ Carte Ratios of Leaf Reflectance 6
11 Carte2 $\LARGE\frac{\rho_{695}}{\rho_{760}}$ Carte Ratios of Leaf Reflectance 6
12 Carte3 $\LARGE\frac{\rho_{605}}{\rho_{760}}$ Carte Ratios of Leaf Reflectance 6
13 Carte4 $\LARGE\frac{\rho_{710}}{\rho_{760}}$ Carte Ratios of Leaf Reflectance 6
14 Carte5 $\LARGE\frac{\rho_{695}}{\rho_{670}}$ Carte Ratios of Leaf Reflectance 6
15 SR800680 $\LARGE\frac{\rho_{800}}{\rho_{680}}$ Simple Band Ratio 7
16 SR675700 $\LARGE\frac{\rho_{675}}{\rho_{700}}$ Simple Band Ratio 7
17 SR700670 $\LARGE\frac{\rho_{700}}{\rho_{670}}$ Simple Band Ratio 7
18 SR750700 $\LARGE\frac{\rho_{750}}{\rho_{700}}$ Simple Band Ratio 7
19 SR752690 $\LARGE\frac{\rho_{752}}{\rho_{690}}$ Simple Band Ratio 7
20 SR750550 $\LARGE\frac{\rho_{750}}{\rho_{550}}$ Simple Band Ratio 7
21 SR750710 $\LARGE\frac{\rho_{750}}{\rho_{710}}$ Simple Band Ratio 7
22 NVI $\LARGE\frac{\rho_{777}-\rho_{747}}{\rho_{673}}$ Normalized Vegetation Index 8
23 EVI $\LARGE\frac{2.5(\rho_{800}-\rho_{670})}{\rho_{800}+6\rho_{670}+7.5\rho_{475}+1}$ Enhanced Vegetation Index 9
24 OSAVI $\LARGE\frac{1.16(\rho_{800}-\rho_{670})}{0.16+\rho_{800}+\rho_{670}}$ Optimized Soil-Adjusted Vegetation Index 10
25 OSAVI2 $\LARGE\frac{1.16(\rho_{750}-\rho_{705})}{0.16+\rho_{750}+\rho_{705}}$ Optimized Soil-Adjusted Vegetation Index 10
26 TCARI $\large 0.5+3[(\rho_{700}-\rho_{670})-0.2(\rho_{700}-\rho_{550})*(\frac{\rho_{700}}{\rho_{670}})]$ Transformed Chlorophyll Absorption in Reflectance 11
27 TCARI2 $\large 3[(\rho_{750}-\rho_{705})- 0.2(\rho_{750}-\rho_{550})*(\frac{\rho_{750}}{\rho_{705}})]$ Transformed Chlorophyll Absorption in Reflectance 11
28 MCARI $\large 4[(\rho_{700}-\rho_{670})-0.2(\rho_{700}-\rho_{550})]*(\frac{\rho_{700}}{\rho_{670}})$ Modified Chlorophyll Absorption in Reflectance Index 12
29 TVI $\large 0.5[120(\rho_{750}-\rho_{550})-2.5(\rho_{670}-\rho_{550})]$ Triangular Vegetation Index 13
30 SPVI $\large 0.4*3.7(\rho_{800}-\rho_{670})-1.2\mid\rho_{530}-\rho_{670}\mid$ Spectral Polygon Vegetation Index 14
31 REP $\large 700+40*[\frac{(\rho_{670}-\rho_{780})}{2}-\frac{(\rho_{700}}{\rho_{740}-\rho_{700}})]$ Red Edge Position Index 15
32 PRI $\LARGE\frac{\rho_{531}-\rho_{570}}{\rho_{531}+\rho_{570}}$ Photochemical Reflectance Index [16]
33 RI1db $\LARGE\frac{\rho_{735}}{\rho_{720}}$ Ratio Index 16
34 VOG1 $\LARGE\frac{\rho_{740}}{\rho_{720}}$ Vogelmann Red Edge Index 17
35 VOG2 $\LARGE\frac{\rho_{734}-\rho_{747}}{\rho_{715}+\rho_{726}} $ Vogelmann Red Edge Index 17
36 VOG3 $\LARGE\frac{\rho_{734}-\rho_{747}}{\rho_{715}+\rho_{720}} $ Vogelmann Red Edge Index 17
37 RDVI $\LARGE\frac{\rho_{800}-\rho_{670}}{\sqrt{\rho_{800}+\rho_{670}}}$ Renormalized Difference Vegetation Index 18
38 MSAVI $\large 0.5[2(\rho_{800}+1-\sqrt{(2\rho_{800}+1)^2}-1.2\mid\rho_{530}-\rho_{670}\mid] $ Modified Soil Adjusted Vegetation Index 19
39 MCARI2 $\large [(\rho_{750}-\rho_{705})-0.2(\rho_{700}-\rho_{550})]*(\frac{\rho_{750}}{\rho_{705}})$ Modified Chlorophyll Absorption in Reflectance Index 12
40 MCARI2/OSAVI2 $\large\frac{MCARI2}{OSAVI2}$ MCARI2/OSAVI2 20
41 PSRI $\LARGE\frac{\rho_{678}-\rho_{500}}{\rho_{750}}$ Plant Senescence Reflectance Index 21
42 HBSI1 $\LARGE\frac{\rho_{855}-\rho_{682}}{\rho_{855}+\rho_{682}}$ Hyperspectral Biomass and Structural Index 22
43 HBSI2 $\LARGE\frac{\rho_{910}-\rho_{682}}{\rho_{910}+\rho_{682}}$ Hyperspectral Biomass and Structural Index 22
44 HBSI3 $\LARGE\frac{\rho_{550}-\rho_{682}}{\rho_{550}+\rho_{682}}$ Hyperspectral Biomass and Structural Index 22
45 DCNI $\LARGE\frac{(\rho_{720}-\rho_{700})*(\rho_{700}-\rho_{670})}{\rho_{720}-\rho_{670}+0.03}$ Double-peak Canopy Nitrogen Index 23
46 HBCI8 $\LARGE\frac{\rho_{550}-\rho_{515}}{\rho_{550}+\rho_{515}}$ Hyperspectral Biochemical Indices 22
47 HBCI9 $\LARGE\frac{\rho_{550}-\rho_{490}}{\rho_{550}+\rho_{490}}$ Hyperspectral Biochemical Indices 22
48 HREI15 $\LARGE\frac{\rho_{855}-\rho_{720}}{\rho_{855}+\rho_{720}}$ Hyperspectral Red Edge Indices 22
49 HREI16 $\LARGE\frac{\rho_{910}-\rho_{705}}{\rho_{910}+\rho_{705}}$ Hyperspectral Red Edge Indices 22
50 NDRE $\LARGE\frac{\rho_{790}-\rho_{720}}{\rho_{790}+\rho_{720}}$ Normalized Difference Vegetation Indexes 24

SHAP Feature Importance in each time-step

whispers_short

References

Footnotes

  1. A. A. Gitelson and M. N. Merzlyak, “Remote sensing of chlorophyll concentration in higher plant leaves,” Adv. Space Res., vol. 22, no. 5, pp. 689–692, Jan. 1998, doi: 10.1016/S0273-1177(97)01133-2. 2

  2. A. Gitelson and M. N. Merzlyak, “Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation,” J. Plant Physiol., vol. 143, no. 3, pp. 286–292, Mar. 1994, doi: 10.1016/S0176-1617(11)81633-0. 2

  3. P. Li, L. Jiang, Z. Feng, S. Sheldon, and X. Xiao, “Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China,” Front. Earth Sci., vol. 10, no. 2, pp. 303–314, Jun. 2016, doi: 10.1007/s11707-016-0545-8.

  4. S. Mishra and D. R. Mishra, “Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters,” Remote Sens. Environ., vol. 117, pp. 394–406, Feb. 2012, doi: 10.1016/j.rse.2011.10.016.

  5. B. Datt, “Remote Sensing of Water Content in Eucalyptus Leaves,” Aust. J. Bot., vol. 47, no. 6, p. 909, 1999, doi: 10.1071/BT98042. 2 3

  6. G. A. CARTER, “Ratios of leaf reflectances in narrow wavebands as indicators of plant stress,” Int. J. Remote Sens., vol. 15, no. 3, pp. 697–703, Feb. 1994, doi: 10.1080/01431169408954109. 2 3 4 5

  7. D. Sims and J. Gamon, “Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages,” Remote Sens. Environ., vol. 81, pp. 337–354, Aug. 2002, doi: 10.1016/S0034-4257(02)00010-X. 2 3 4 5 6 7

  8. X. Li, X. Liu, M. Liu, C. Wang, and X. Xia, “A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress,” Int. J. Appl. Earth Obs. Geoinformation, vol. 36, pp. 41–53, Apr. 2015, doi: 10.1016/j.jag.2014.10.017.

  9. A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, “Overview of the radiometric and biophysical performance of the MODIS vegetation indices,” Remote Sens. Environ., vol. 83, no. 1–2, pp. 195–213, Nov. 2002, doi: 10.1016/S0034-4257(02)00096-2.

  10. G. Rondeaux, M. Steven, and F. Baret, “Optimization of soil-adjusted vegetation indices,” Remote Sens. Environ., vol. 55, no. 2, pp. 95–107, Feb. 1996, doi: 10.1016/0034-4257(95)00186-7. 2

  11. D. Haboudanea, J. R. Millera, E. Patteyc, P. J. Zarco-tejadad, and I. B. Strachane, “vegetation indices (Normalized Difference Vegetation Index [NDVI], Renormalized Difference Vegetation Index [RDVI], Modified Simple ent 90Vegetation Index [TVI], and Modified Chlorophyll Absorption Ratio Index [MCARI]) and to design new ones (MTVI1, MCARI.” 2

  12. C. Daughtry, C. Walthall, M. S. Kim, E. B. D. Colstoun, and J. McMurtrey, “Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance,” 2000, doi: 10.1016/S0034-4257(00)00113-9. 2

  13. N. H. Broge and E. Leblanc, “Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density,” Remote Sens. Environ., vol. 76, no. 2, pp. 156–172, May 2001, doi: 10.1016/S0034-4257(00)00197-8.

  14. M. Vincini, “Narrow-Band Vegetation Indexes from Hyperion and Directional Chris/Proba Data for Canopy Chlorophyll Density Estimation in Maize,” Jan. 2007, Accessed: Jul. 26, 2022. [Online]. Available: https://www.academia.edu/57179926/Narrow_Band_Vegetation_Indexes_from_Hyperion_and_Directional_Chris_Proba_Data_for_Canopy_Chlorophyll_Density_Estimation_in_Maize

  15. J. G. P. W. Clevers, “Imaging Spectrometry in Agriculture - Plant Vitality And Yield Indicators,” Eurocourses Remote Sens., p. 193, Jan. 1994.

  16. R. Gupta, D. Vijayan, and T. Prasad, “Comparative analysis of red-edge hyperspectral indices,” Adv. Space Res. - ADV SPACE RES, vol. 32, pp. 2217–2222, Dec. 2003, doi: 10.1016/S0273-1177(03)90545-X.

  17. J. E. VOGELMANN, B. N. ROCK, and D. M. MOSS, “Red edge spectral measurements from sugar maple leaves,” Int. J. Remote Sens., vol. 14, no. 8, pp. 1563–1575, May 1993, doi: 10.1080/01431169308953986. 2 3

  18. J.-L. Roujean and F.-M. Breon, “Estimating PAR absorbed by vegetation from bidirectional reflectance measurements,” Remote Sens. Environ., vol. 51, no. 3, pp. 375–384, Mar. 1995, doi: 10.1016/0034-4257(94)00114-3.

  19. J. Qi, A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian, “A modified soil adjusted vegetation index,” Remote Sens. Environ., vol. 48, no. 2, pp. 119–126, May 1994, doi: 10.1016/0034-4257(94)90134-1.

  20. C. Wu, Z. Niu, Q. Tang, and W. Huang, “Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation,” Agric. For. Meteorol., vol. 148, no. 8, pp. 1230–1241, Jul. 2008, doi: 10.1016/j.agrformet.2008.03.005.

  21. M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova, and V. YU. Rakitin, “Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening,” Physiol. Plant., vol. 106, no. 1, pp. 135–141, 1999, doi: 10.1034/j.1399-3054.1999.106119.x.

  22. P. Thenkabail, M. Gumma, P. Teluguntla, and M. I. Ahmed, “Hyperspectral Remote Sensing of Vegetation and Agricultural Crops.,” Photogramm. Eng. Remote Sens., vol. 80, Aug. 2014. 2 3 4 5 6 7

  23. X. Jin, Z. Li, H. Feng, X. Xu, and G. Yang, “Newly Combined Spectral Indices to Improve Estimation of Total Leaf Chlorophyll Content in Cotton,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 11, pp. 4589–4600, Nov. 2014, doi: 10.1109/JSTARS.2014.2360069.

  24. E. Barnes et al., “Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data,” Jan. 2000.

About

Supplemental Material for MAIZE YIELD PREDICTION BASED ON MULTI-MODALITY REMOTE SENSING AND LSTM MODELS IN NITROGEN MANAGEMENT PRACTICE TRIALS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published