View Final_Report to get idea of this project.
Code adapted from: https://github.com/ronghanghu/tensorflow_compact_bilinear_pooling Paper reference: End-to-End Entity Classification on Multimodal Knowledge Graphs: https://arxiv.org/abs/2003.12383
adni_dataprep.py
Preparation of ADNI dataset => we also prepared the dataset further if you only want to use adni datasetpd_dataprep.py
Preparation of PPMI dataset => we also prepared the dataset further if you only want to use ppmi datasetcombined_dataprep.py
: Preparation of ADNI and PPMI datasetconfig.yaml
: config file for adni_pd_link_NC.ipynbadni_pd_link_NC.ipynb
: Jupyter notebook to run dataset through link prediction and node classification- utils folder, consisting of
dataprep_utils.py
: functions needed for preparing dataset for adni_dataprep.py and pd_dataprep.pyload.py
: loading and preparing dataset for tasks of node classification and link predictiondata_utils.py
: classes to prepare images for 3D SqueezeNet
model_utils.py
: functions used in model developmentSFCNnet.py
: classes defining the SCFN networksqueezenet.py
: classes defining the SqueezeNet networkrgcn.py
: classes defining rgcn network.Combined.ipynb
: Jupyter notebook to prepare ADNI and PPMI datasets for ablation studies
I used several pretrained models in this project
SFCN
: https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain3D-Squeezenet
: https://github.com/okankop/Efficient-3DCNNsBio-Clinical BERT
: https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
I got the data from ADNI (https://adni.loni.usc.edu/) and PPMI (https://www.ppmi-info.org/). If you like, please request the data from there directly.
- Run adni_dataprep.py
- Run pd_dataprep.py
- Run combined_dataprep.py (need both step 1 and 2 to be run first)
- Change config.yaml to reflect updated parameters like model path, embedding paths etc
- Run adni_pd_link_NC.ipynb