Skip to content

dataistanbul/courses-kaggle-python-machine-learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DataCamp Template Course

This an automatically generated DataCamp course. Use it as a reference to create your own interactive course.

Changes you make to this GitHub repository are automatically reflected in the linked DataCamp course. This means that you can enjoy all the advantages of version control, collaboration, issue handling ... of GitHub.

Workflow

  1. Edit the markdown and yml files in this repository. You can use GitHub's online editor or use git locally and push your changes.
  2. Check out your build attempts on the Teach Dashboard.
  3. Check out your automatically updated course on DataCamp

Getting Started

A DataCamp course consists of two types of files:

  • course.yml, a YAML-formatted file that's prepopulated with some general course information.
  • chapterX.md, a markdown file with:
    • a YAML header containing chapter information.
    • markdown chunks representing DataCamp Exercises.

To learn more about the structure of a DataCamp course, check out the documentation.

Every DataCamp exercise consists of different parts, read up about them here. A very important part about DataCamp exercises is to provide automated personalized feedback to students. In R, these so-called Submission Correctness Tests (SCTs) are written with the testwhat package. SCTs for Python exercises are coded up with pythonwhat. Check out the GitHub repositories' wiki pages for more information and examples.

Want to learn more?

Happy teaching!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published