-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a notebook with a visualization of the aprrox_* functions and the…
…ir errors (#7974) * Add a notebook with a visualization of the aprrox_* functions and their errors * Fix spelling error
- Loading branch information
Showing
2 changed files
with
384 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
382 changes: 382 additions & 0 deletions
382
apps/hannk/halide/docs/approx_log2_and_applications.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,382 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "r1XiiUQGUjpx" | ||
}, | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib as mpl\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"# Many architectures have shifts where the right-hand-side is signed. A negative\n", | ||
"# RHS is the same as a positive shift in the other direction.\n", | ||
"def shift_right(x, y):\n", | ||
" return np.floor(x / 2**y)\n", | ||
"def shift_left(x, y):\n", | ||
" return np.floor(x * 2**y)\n", | ||
"def rounding_shift_right(x, y):\n", | ||
" return np.round(x / 2**y)\n", | ||
"def rounding_shift_left(x, y):\n", | ||
" return np.round(x * 2**y)\n", | ||
"\n", | ||
"def bitwise_and(x, y):\n", | ||
" return np.mod(x, y + 1)\n", | ||
"\n", | ||
"# This is sqrdmulh on ARM\n", | ||
"def multiply_2x_high(x, y):\n", | ||
" return rounding_shift_right(x * y, 15)\n", | ||
"\n", | ||
"def relative_error(x, y):\n", | ||
" return (x - y) / (np.maximum(x, y) + 1e-3)\n", | ||
"\n", | ||
"def plot_results(x, exact, approxs, title, logx = False, logy = False, relative = False, log2_xscale = 0, log2_yscale = 0):\n", | ||
" fig, [p1, p2] = plt.subplots(2, 1)\n", | ||
"\n", | ||
" p1.set_xlabel('x')\n", | ||
" if logx:\n", | ||
" p1.set_xscale('log')\n", | ||
" p1.set_ylabel(title)\n", | ||
" if logy:\n", | ||
" p1.set_yscale('log')\n", | ||
"\n", | ||
" xscale = 2**log2_xscale\n", | ||
" yscale = 2**log2_yscale\n", | ||
"\n", | ||
" exact = np.round(exact*yscale)/yscale\n", | ||
"\n", | ||
" p1.plot(x/xscale, exact)\n", | ||
" for approx in approxs:\n", | ||
" p1.plot(x/xscale, approx/yscale)\n", | ||
"\n", | ||
" p2.set_xlabel('x')\n", | ||
" if logx:\n", | ||
" p2.set_xscale('log')\n", | ||
"\n", | ||
" p2.set_ylabel('relative error' if relative else 'error')\n", | ||
" for approx in approxs:\n", | ||
" p2.plot(x/xscale, relative_error(approx/yscale, exact) if relative else approx/yscale - exact)\n", | ||
"\n", | ||
"def eval_poly(x, p, q):\n", | ||
" x1 = rounding_shift_left(x, 15 - q)\n", | ||
" y = p[0]\n", | ||
" xi = x1\n", | ||
" for i in p[1:]:\n", | ||
" y = y + multiply_2x_high(i, xi)\n", | ||
" xi = multiply_2x_high(xi, x1)\n", | ||
" return rounding_shift_right(y, 15 - q)\n", | ||
"\n", | ||
"points = 6\n", | ||
"degree = 3\n", | ||
"log2_poly_x = np.arange(points, 2 * points + 1) / points\n", | ||
"log2_poly_y = np.log2(log2_poly_x)\n", | ||
"log2_poly = np.polyfit(log2_poly_x - 1, log2_poly_y, degree)\n", | ||
"\n", | ||
"exp2_poly_x = np.arange(points, 2 * points + 1) / points\n", | ||
"exp2_poly_y = np.exp2(exp2_poly_x - 1) - 1\n", | ||
"exp2_poly = np.polyfit(exp2_poly_x - 1, exp2_poly_y, degree)\n", | ||
"\n", | ||
"log2_poly = log2_poly[::-1]\n", | ||
"exp2_poly = exp2_poly[::-1]\n", | ||
"\n", | ||
"print(log2_poly)\n", | ||
"print(exp2_poly)\n", | ||
"\n", | ||
"log2_poly = np.round(log2_poly * 2**15)\n", | ||
"exp2_poly = np.round(exp2_poly * 2**15)\n", | ||
"exp2_poly[0] = 0\n", | ||
"\n", | ||
"print(log2_poly)\n", | ||
"print(exp2_poly)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "1xjo4hIEo_z5" | ||
}, | ||
"source": [ | ||
"# Approximate N*log2(x*2^q_x), where N = 2^q, and the intermediate computations are\n", | ||
"# restricted to be integers.\n", | ||
"def approx_log2(x, q, q_x = 0):\n", | ||
" # This can be computed with count_leading_zeros\n", | ||
" floor_log2_x = np.select([x > 0], [np.floor(np.log2(x))], [-1])\n", | ||
"\n", | ||
" # We've computed log2(x*2^q_x) = log2(x) + q_x. Subtract that offset now\n", | ||
" # before multiplying by the result quantization.\n", | ||
" result = shift_left(floor_log2_x - q_x, q)\n", | ||
"\n", | ||
" frac = bitwise_and(shift_right(x, floor_log2_x - q), 2**q - 1)\n", | ||
"\n", | ||
" return result + eval_poly(frac, log2_poly, q)\n", | ||
"\n", | ||
"x = np.arange(1, 10000)\n", | ||
"q = 15\n", | ||
"q_x = 2\n", | ||
"log2_x = np.log2(x / 2**q_x)\n", | ||
"approx_log2_x = approx_log2(x, q, q_x)\n", | ||
"\n", | ||
"plot_results(x, log2_x, [approx_log2_x], 'log2(x)', logx=True, log2_xscale=q_x, log2_yscale=q)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "6uJN5muLsLdE" | ||
}, | ||
"source": [ | ||
"\n", | ||
"# Approximate 2^(x/2^q_x)*2^q\n", | ||
"def approx_exp2(x, q_x, q):\n", | ||
" int_part = shift_right(x, q_x)\n", | ||
" frac_part = x - shift_left(int_part, q_x)\n", | ||
"\n", | ||
" frac_part = eval_poly(frac_part, exp2_poly, q_x)\n", | ||
"\n", | ||
" exp_int_part = shift_left(1, int_part + q)\n", | ||
" return exp_int_part + rounding_shift_right(exp_int_part * frac_part, q_x)\n", | ||
"\n", | ||
"q_x = 10\n", | ||
"q = 15\n", | ||
"x = np.arange(-4000, 2000)\n", | ||
"approx_exp2_x = approx_exp2(x, q_x, q)\n", | ||
"exact = np.exp2(x / 2**q_x)\n", | ||
"\n", | ||
"plot_results(x, exact, [approx_exp2_x], '2^x', False, True, relative=True, log2_xscale=q_x, log2_yscale=q)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "5BP-edzCmNBi" | ||
}, | ||
"source": [ | ||
"q = 15\n", | ||
"x = np.arange(10, 10000) * 10\n", | ||
"round_trip_x = approx_exp2(approx_log2(x, q), q, 0)\n", | ||
"\n", | ||
"plot_results(x, x, [round_trip_x], '2^log2(x)', logx=True, logy=True, relative=True)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "nyrzI90uNH1s" | ||
}, | ||
"source": [ | ||
"# Approximate 2^q*sqrt(2^(x/2^q_x))\n", | ||
"def sqrt_approx_exp2(x, q_x, q):\n", | ||
" return approx_exp2(x, q_x + 1, q)\n", | ||
"\n", | ||
"q = 11\n", | ||
"q_x = 8\n", | ||
"x = np.arange(-1000, 2000)\n", | ||
"approx_exp2_x = sqrt_approx_exp2(x, q_x, q)\n", | ||
"exact = np.sqrt(np.exp2(x / 2**q_x))\n", | ||
"\n", | ||
"plot_results(x, exact, [approx_exp2_x], 'sqrt(2^x)', relative=True, log2_xscale=q_x, log2_yscale=q)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "Kno5t4VihCTL" | ||
}, | ||
"source": [ | ||
"# Approximate sqrt(x) = 2^((1/2)*log2(x))\n", | ||
"def approx_sqrt(x, q):\n", | ||
" # log2(x) will never be larger than 32, for 32-bit x. So to make the result\n", | ||
" # fit in a 16-bit integer, we can make the precision 2^16/32 = 2048.\n", | ||
" q_x = 11;\n", | ||
"\n", | ||
" log2_sqrt_x = approx_log2(x, q_x - 1)\n", | ||
" return approx_exp2(log2_sqrt_x, q_x, q)\n", | ||
"\n", | ||
"q = 15\n", | ||
"x = np.arange(1, 10000)**2\n", | ||
"sqrt_x = np.sqrt(x)\n", | ||
"approx_sqrt_x = approx_sqrt(x, q)\n", | ||
"\n", | ||
"plot_results(x, sqrt_x, [approx_sqrt_x], 'sqrt(x)', log2_yscale=q, relative=True)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "0dMecIGr92WY" | ||
}, | ||
"source": [ | ||
"# Approximate 2^31/sqrt(x) = 2^(-(1/2)*log2(x))\n", | ||
"def approx_reciprocal_sqrt(x):\n", | ||
" q = 15\n", | ||
" log2_sqrt_x = approx_log2(x, q - 1)\n", | ||
" return approx_exp2(-log2_sqrt_x, q, 31)\n", | ||
"\n", | ||
"x = np.arange(1, 10000)**2\n", | ||
"inv_sqrt_x = 1 / np.sqrt(x)\n", | ||
"approx_reciprocal_sqrt_x = approx_reciprocal_sqrt(x)\n", | ||
"\n", | ||
"plot_results(x, inv_sqrt_x, [approx_reciprocal_sqrt_x], '1/sqrt(x)', True, True, True, log2_yscale=31)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "VFC9aUFcc8d7" | ||
}, | ||
"source": [ | ||
"# Approximate 2^32/x = 2^32*2^(-log2(x))\n", | ||
"def approx_reciprocal(x):\n", | ||
" q = 15;\n", | ||
" log2_x = approx_log2(x, q)\n", | ||
" return approx_exp2(-log2_x, q, 31)\n", | ||
"\n", | ||
"x = 1.01**np.arange(0, 2000)\n", | ||
"inv_x = 1 / x\n", | ||
"approx_inv_x = approx_reciprocal(x)\n", | ||
"# This is ~sqrt(2) times more accurate, but maybe not practical for large x.\n", | ||
"approx_inv_sqrt_x2 = approx_reciprocal_sqrt(x*x)\n", | ||
"\n", | ||
"plot_results(x, inv_x, [approx_inv_x], '1/x', True, True, log2_yscale=31, relative=True)\n", | ||
"plot_results(x, inv_x, [approx_inv_sqrt_x2], '1/x', True, True, log2_yscale=31, relative=True)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "6BhQzLIZCcKC" | ||
}, | ||
"source": [ | ||
"# Approximate log2(exp2(x) + c)\n", | ||
"def approx_log2_exp2_plus_constant(x, c, q_x, q):\n", | ||
" # When x/2^q_x is large, approx_exp2 below will overflow. But when it is large\n", | ||
" # we don't need it to be very precise\n", | ||
" q_exp = 16 #np.minimum(16, 16 - np.floor(np.log2(np.maximum(x, 1))))\n", | ||
" one = 2**q_exp\n", | ||
"\n", | ||
" one_plus_exp2_x = one * c + approx_exp2(x, q_x, q_exp)\n", | ||
" # Mimic overflow of int32\n", | ||
" one_plus_exp2_x = np.mod(one_plus_exp2_x, 2**31)\n", | ||
"\n", | ||
" raw = approx_log2(one_plus_exp2_x, q, q_exp)\n", | ||
"\n", | ||
" line = rounding_shift_right(x, q_x - q)\n", | ||
"\n", | ||
" threshold = 30 - q_exp\n", | ||
" result = np.select([shift_right(x, q_x) < threshold], [raw], line)\n", | ||
" return result\n", | ||
"\n", | ||
"def approx_log2p1_exp2(x, q_x, q):\n", | ||
" return approx_log2_exp2_plus_constant(x, 1, q_x, q)\n", | ||
"\n", | ||
"def approx_log2m1_exp2(x, q_x, q):\n", | ||
" return approx_log2_exp2_plus_constant(x, -1, q_x, q)\n", | ||
"\n", | ||
"x = np.arange(-4000, 4000)*8\n", | ||
"q_x = 11\n", | ||
"q = 15\n", | ||
"\n", | ||
"exact = np.log2(np.exp2(x / 2**q_x) + 1)\n", | ||
"approx = approx_log2p1_exp2(x, q_x, q)\n", | ||
"plot_results(x, exact, [approx], 'log2(2^x + 1)', log2_xscale=q_x, log2_yscale=q)\n", | ||
"\n", | ||
"x = np.arange(1, 4000)*8\n", | ||
"exact = np.log2(np.exp2(x / 2**q_x) - 1)\n", | ||
"approx = approx_log2m1_exp2(x, q_x, q)\n", | ||
"plot_results(x, exact, [approx], 'log2(2^x - 1)', log2_xscale=q_x, log2_yscale=q)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "G6n1u8fcUf-3" | ||
}, | ||
"source": [ | ||
"# Approximate logistic(x) = 1/(e^-x + 1)\n", | ||
"# = 2^log2(1/(e^-x + 1))\n", | ||
"# = 2^-log2(e^-x + 1)\n", | ||
"def approx_logistic(x, q_x, q):\n", | ||
" x2 = multiply_2x_high(x, np.round(-np.log2(np.exp(1)) * 2**14))\n", | ||
" q_exp = 11\n", | ||
" log2_d = approx_log2p1_exp2(x2, q_x - 1, q_exp)\n", | ||
" return approx_exp2(-log2_d, q_exp, q)\n", | ||
"\n", | ||
"x = np.arange(-4000, 4000)*8\n", | ||
"q_x = 11\n", | ||
"q = 15\n", | ||
"exact = 1 / (1 + np.exp(-x / 2**q_x))\n", | ||
"approx = approx_logistic(x, q_x, q)\n", | ||
"plot_results(x, exact, [approx], '1/(1 + e^-x)', log2_xscale=q_x, log2_yscale=q)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "LBXXNc_8twQD" | ||
}, | ||
"source": [ | ||
"# Approximate tanh(x) = (e^2x - 1)/(e^2x + 1)\n", | ||
"# = 2^log2((e^2x - 1)/(e^2x + 1))\n", | ||
"# = 2^(log2(e^2x - 1) - log2(e^2x + 1))\n", | ||
"def approx_tanh(x, q_x, q):\n", | ||
" abs_x_base2 = multiply_2x_high(np.abs(x), np.round(np.log2(np.exp(1)) * 2**14))\n", | ||
" q_exp = 11\n", | ||
" log2_n = approx_log2m1_exp2(abs_x_base2, q_x - 2, q_exp)\n", | ||
" log2_d = approx_log2p1_exp2(abs_x_base2, q_x - 2, q_exp)\n", | ||
" # Saturate at int16\n", | ||
" log2_n = np.clip(log2_n, -(2**15), 2**15)\n", | ||
" log2_d = np.clip(log2_d, -(2**15), 2**15)\n", | ||
" return np.sign(x) * approx_exp2(log2_n - log2_d, q_exp, q)\n", | ||
"\n", | ||
"x = np.arange(-4000, 4000)*8\n", | ||
"q_x = 12\n", | ||
"q = 15\n", | ||
"exact = np.tanh(x / 2**q_x)\n", | ||
"approx = approx_tanh(x, q_x, q)\n", | ||
"\n", | ||
"points = 20\n", | ||
"poly_x = np.arange(0, points * 3) / points\n", | ||
"poly_y = np.tanh(poly_x)\n", | ||
"poly = np.polyfit(poly_x, poly_y, 6)\n", | ||
"approx2 = np.polyval(poly, x / 2**q_x) * 2**q\n", | ||
"\n", | ||
"\n", | ||
"plot_results(x, exact, [approx], 'tanh(x)', log2_xscale=q_x, log2_yscale=q)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |