-
Notifications
You must be signed in to change notification settings - Fork 0
rshyst
The rshyst
implementation of the Jiles-Atherton model functions by numerically integrating the differential equation from Jiles & Atherton (1984):
where
where
The anisotropic contribution to anhysteretic magnetization is given by:
where the
Since there is no closed-form expression for the derivative of
The integrals in the equation for
Base class for magnetic hysteresis models
HysteresisModel(dH, units="SI")
Args:
-
dH
: Magnetizing field step-size () -
units
: (default "SI")
A Jiles-Atherton magnetic hysteresis model
JilesAtherton(alpha, a, Ms, k, c, dH, wa=0, Ka=0, theta=0, phi=0, sat_tol=1e-3, integrator="RK4", units="SI")
Args:
-
alpha
: Domain coupling strength -
a
: Domain wall density (A/m or T) -
Ms
: Saturation magnetization of material (A/m or T) -
k
: Pinning site breaking energy (A/m or T) -
c
: Magnetization reversability -
dH
: Magnetizing field step-size () -
wa
: Relative weight of anisotropic effects (default 0.) -
Ka
: Average anisotropy energy density (J/m^3, default 0) -
theta
: Easy axis polar angle (radians, default 0) -
phi
: Easy axis azimuthal angle (radians, default 0) -
sat_tol
: Largest relative change in magnetization at saturation (default 1e-3) -
integrator
: Integrator used for solving differential equation (default 'RK4') -
units
: (default "SI")
integrator
must be one of: EULER
, RK4
, or RK45
Note: If wa=0
or Ka=0
, anisotropic effects will not be computed.